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Motivation Motivation
Conditional Actions Certification of Public Keys: ZKPoK
An authority, or a server, may accept to process a request In the registered key setting, a user can ask for the certification of a
under some conditions only: public key pk, but if he knows the associated secret key sk only:

@ Certification of public key: if the associated secret key is known
@ Transmission of private information:
if the receiver owns a credential

Blind signature on a message:
if the user knows the message (for the security proof)

With an Interactive Zero-Knowledge Proof of Knowledge
@ the user U sends his public key pk;
@ U and the authority A run a ZK proof of knowledge of sk
@ if convinced, A generates and sends the certificate Cert for pk

For extracting sk (required in some security proofs),
the reduction has to make a rewind
(that is not always allowed: e.g., in the UC Framework)
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Certification of Public Keys: ZK and NIZK Proofs Certification of Public Keys: SPHF

[Abdalla, Chevalier, Pointcheval, 2009]

In the registered key setting, a user can ask for the certification of a
public key pk, but if he knows the associated secret key sk only: In the registered key setting, a user can ask for the certification of a

With an Interactive Zero-Knowledge Proof of Membership public key pk, but if he knows the associated secret key sk only:
@ the user U sends his public key pk, and an encryption C of sk; With a Smooth Projective Hash Function
@ U and the authority A run a ZK proof The user U and the authority A use a smooth projective hash system
that C contains the secret key sk associated to pk for L: pkand C = 5;,,((3"? r) are associated to the same sk
@ if convinced, A generates and sends the certificate Cert for pk @ the user U sends his public key pk, and an encryption C of sk;
With a Non-Interactive Zero-Knowledge Proof of Membership @ A generates the certificate Cert for pk, and sends it,
@ the user U sends his public key pk, and an encryption C of sk masked by Hash = Hash(hk; (pk, C));
together with a NIZK proof @ U computes Hash = ProjHash(hp; (pk, C), r)), and gets Cert.

that C contains the secret key sk associated to pk
@ if convinced, A generates and sends the certificate Cert for pk

Implicit proof of knowledge of sk

o
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Smooth Projective Hash Functions Smooth Projective Hash Functions

Smooth Projective Hash Functions [Cramer, Shoup, 20021 PrOperties

For any x € X, H(x) = Hash,(hk; x)
For any x € L, H(x) = ProjHash, (hp; x, w) w witness that x € L

Definition [Cramer, Shoup, 2002] [Gennaro, Lindell, 2003]

Let {H} be a family of functions:
@ X, domain of these functions
@ L, subset (a language) of this domain
such that, for any point x in L, H(x) can be computed by using
@ either a secret hashing key hk: H(x) = Hash,(hk; x);
@ or a public projected key hp: H(x) = ProjHash, (hp; x, w)

For any x ¢ L, H(x) and hp are independent

Pseudo-Randomness
For any x € L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X:
While the former works for all points in the domain X, property requi P

the latter works for x € L only, and requires a witness w to this fact. Hard-Partitioned Subset
. . _ L is a hard-partitioned subset of X if it is computationally hard to
Public mapping hk — hp = ProjKG, (hk, x) distinguish a random element in L from a random element in X\ L
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Applications Applications
Examples Examples (Con’d)
DH Language [Cramer, Shoup, 2002] Commitment/Encryption [Gennaro, Lindell, 2003]
Lo = {(u,v)} such that (g, h, u, v) is DH tuple: Lokm = {c} such that c is an encryption of m under pk:
there exists r suchthat u = g"and v = b’ there exists r such thatc =& (m; r)
—  Public-key Encryption with IND-CCA Security — Password-Authenticated Key Exchange in the Standard Model
Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]
o HashKG() = hk = (71,73) 3 Zg % g Lok e,m) = {c} such that c is an encryption of m under pk, with label ¢

@ ProjKG(hk) = hp = g" h™ — PAKE in the UC Framework (passive corruptions)

Hash(hk, (u, v)) = u"v* = hp" = ProjHash(hp, (u, v); r) Extractable/Equivocable Commitment  [Abdalla, Chevalier, Pointcheval, 2009]

Lok m = {c} such that ¢ is a equivocable/extractable commitment of m

— PAKE in the UC Framework secure against Active Corruptions
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Computational Assumptions Signature & Encryption

Assumptions: CDH and DLin General Tools: Signature

G a cyclic group of prime order p (with or without bilinear map).

Definition (Signature Scheme)

Definition (The Computational Diffie-Hellman problem (CDH))
For any generator g < G, and any scalars a, bl 7z,
given (g, g%, g°), compute g2°.

S = (Setup, SKeyGen, Sign, Verif):

@ Setup(1¥) — global parameters param;

@ SKeyGen(param) — pair of keys (sk, vk);
Decisional variant easy if a bilinear map is available. @ Sign(sk,m;s) — signature o, using the random coins s;
@ Verif(vk,m,o) — validity of o

Definition (Decision Linear Problem (DLin))
For any generator g < G, and any scalars a, b, x, y, ce Zp,
given (g, g%, ¢¥, g*8, ¢"°, g°), decide whether ¢ = a + b or not.

| \

Definition (Security: EF-CMA)
An adversary should not be able to generate

Equivalently, given a reference triple (u = g*,v = ¢%, g) a new valid message-signature pair (Existential Forgery)
and a new triple (U =u? =g, V = vP = g T = ¢°), even when having access to any signature of its choice
decide whether T = g@t? or not (that is ¢ = a+ b). (Chosen-Message Attack).

G
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Signature & Encryption

General Tools: Encryption

Signature: Waters

G = (g) = (h) group of order p, and a bilinearmap e: G x G — Gt

[Waters, 2005]

Waters Signature
For a k-bit message M = (M;), we define F(M) = up Hf-‘:1 u,M".
@ Keys: vk=Y = g*, sk= X = h¥, for x & Z;
e Sign(sk= X, M;s), for M € {0,1}k and s & 7,
— g = (01 =X -F(M)s 00 = g_s);
@ Verif(vk= X,M,c = (01, 02)) checks whether
e(ga 01) ’ e(‘F(M)702) = G(Y, h)

&

Waters signature reaches EF-CMA under the CDH assumption
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Signature & Encryption

Encryption: Linear

G = (g) group of order p

Linear Encryption
@ Keys: dk = (x1,x2)<iZ§, pk = (X1 = g¥1, Xo = g’2);

@ Encrypt(pk = (X1, Xz), m; (ry, 1)), for me G and (ry, r2) &Zg
— c=(c1=X{",co=Xz,c3=g""2-m);

[Boneh, Boyen, Shacham, 2004]

1 1
/X4 Cz/Xz_

@ Decrypt(dk = (x1,X2),C = (C1,C2,C3)) — m=cs/c,

<

Linear encryption reaches IND-CPA under the DLin assumption

Ecole Normale Supérieure David Pointcheval
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Definition (Encryption Scheme)

& = (Setup, EKeyGen, Encrypt, Decrypt):
@ Setup(1¥) — global parameters param;
@ EKeyGen(param) — pair of keys (pk, dk);
@ Encrypt(pk, m;r) — ciphertext ¢, using the random coins r;
@ Decrypt(dk,c) — plaintext, or L if the ciphertext is invalid.

Definition (Security: IND-CPA)

An adversary should not be able to distinguish

the encrytion of mg from the encryption of my (Indistinguishability)

whereas it can encrypt any message of its choice
(Chosen-Plaintext Attack).

David Pointcheval 14/34
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Groth-Sahai Methodology

Groth-Sahai Proofs

[Groth, Sahai, 2008]
For any pairing product equation of the form:
[T e(A, Xy [T e(X, X)) = t,

where the A; € G, and t € G are constant group elements,
aj € Zp, and v; ; € Zp are constant scalars, and X; are unknowns
@ either group elements in G,
@ or of the form g%,
one can make a proof of knowledge of values for the Xj’s or x;’s
so that the equation is satisfied:
@ one first commits these secret values using random coins,

@ and then provides proofs, that are group elements, using the
above random coins,

— Under the DLin assumption: Efficient NIZK
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Electronic Cash Blind RSA [Chaum, 1981]

Electronic Coins [Chaum, 1981] The easiest way.for blind signatures, is to lblind the message:
To get an RSA signature on m under public key (n, e),

@ The user computes a blind version of the hash value:
M = H(m)and M' = M- r® mod n
@ The signer signs M’ into o/ = M’? mod n
@ The user unblinds the signature: o = ¢’/r mod n
Electronic Cash Indeed,
The process is the following one:
@ Withdrawal: the user gets a signed coin ¢ from the bank
@ Spending: the user spends a coin ¢ in a shop — Proven under the One-More RSA
@ Deposit: the shop gives back the money to the bank [Bellare, Namprempre, Pointcheval, Semanko, 2001]

Expected properties:
@ coins are signed by the bank, for unforgeability
@ coins must be distinct to detect/avoid double-spending
@ the bank should not know to whom it gave a coin, for anonymity J

o=o/r=M%r=M-r®/r=Mr/r=Mmod n

The coin is blindly signed by the bank
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Randomizable Commutative Signature/Encryption Randomizable Commutative Signature/Encryption

Blind Signatures Randomizable Commutative Signature/Encryption

[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]

Randomizable Commutative Signature/Encryption

R
[Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011] Encrypte andome
L |+ I . pk, r
@ The user "blinds” M into C, under random coins r @ - P @)
@ The signer signs C into o(C), under random coins s dk

, , : D
@ The user "unblinds” the signature o(M), granted the coins r convple

Weakness

The signer can recognize his signature: the random coins s in o(M)
— Randomizable Signature

k; s
Signs

p SigExtse
. SR
@ Encryption hides M (blinding of the message) C dk L8 o
@ Re-randomization hides (M) (blinding of the signature) ] Randoms ‘é@&o
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Randomizable Commutative Signature/Encryption Randomizable Commutative Signature/Encryption
B I i nd Sig natu I‘eS B I i nd S i g natu I'e [Blazy, Fuchsbauer, Pointcheval, Vergnaud, 2011]
Such a primitive can be used for a Waters Blind Signature, In order to get the ¢-bit message M = {M;} blindly signed:
by encrypting F(M):

With Groth-Sahai NIZKP

@ Unforgeability: one-more forgery would imply a forgery
against the signature scheme (CDH assumption)

@ Blindness: a distinguisher would break indistinguishability
of the encryption scheme (DLin assumption)

@ the user U encrypts M into Cy, and F(M) into Cy;

@ U produces a Groth-Sahai NIZK that
Cy and C, contain the same M (bit-by-bit proof)

@ if convinced, A generates a signature on Co

@ granted the commutativity, U decrypts it
One obtains a plain Waters Signature into a Waters signature of M,

and eventually re-randomizes the signature

9/ 4+ 24 group elements have to be sent:
— It was the most efficient blind signature up to 2011
Why NIZK, since there are already two flows?

A proof of knowledge of M in C = E(F(M)) has to be sent
for the security proof: Groth-Sahai NIZK!
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Randomizable Commutative Signature/Encryption Definitions

Blind Signature [Blazy, Pointcheval, Vergnaud, 2012] Oblivious Transfers

In order to get the ¢-bit message M = {M;} blindly signed:

Oblivious Transfer [Rabin, 1981]

With SPHF A sender S wants to send a message M to U such that

The user U and the authority A use a smooth projective hash system @ U gets M with probability 1/2, or nothing
forL: G =€, (M;r)and G, = £, (F(M); s) contain the same M @ S does not learn whereas U gets the message M or not
@ U sends encryptions of M, into Cy, and F(M), into Co;
@ Agenerates 1-2 Oblivious Transfer [Even, Goldreich, Lempel, 1985]

e asignature o on Cy, A sender S owns two messages mgy and my, and U owns a bit b

= BEES I UG o = el (G, C) @ U gets my, but nothing on the other message

@ U computes Hash = ProjHash(hp; (Cy, Cz), (r, s)), and gets o. @ S does not learn anything about b
Granted the commutativity, U decrypts it into a Waters signature

of M, and eventually re-randomizes it

Such a protocol requires 8/ + 12 group elements in total only!
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Definitions

Oblivious Signature-Based Encryption

[Li, Du, Boneh, 2003]

A sender S wants to send a message M to U such that

@ U gets M if and only if it owns a signature o
on a message m valid under vk

@ S does not learn whereas U gets the message M or not
Correctness: if U owns a valid signature, he learns M

Security Notions

@ Oblivious: S does not know whether U owns a valid signature
(and thus gets the message);

@ Semantic Security: U does not learn any information about M
if he does not own a valid signature.

Ecole Normale Supérieure David Pointcheval
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Examples

RSA-Based OSBE: Security

@ Oblivious: u = (oh*) mod nis uniformly distributed in Zj,
(for an appropriate range of x);
@ Semantic Security: upon reception of u,
S sends v = h'+¢? mod n for a random z.
Then v = hé(@+2): formally, v = W€ for y = d + z.
If U is able to compute r = u® hY (extracted from H'-calls):
r=u't?h~9h=Z and thus

o =h? = u'"%%/(rh?) mod n.

— the knowledge of a valid signature is required to decrypt

But security in the Random Oracle Model

Ecole Normale Supérieure David Pointcheval
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Oblivious Signature-Based Encryption
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Examples

RSA-Based OSBE

[Li, Du, Boneh, 2003]

The authority generates a FDH-RSA system (vk = (n, e), sk = d),
and signs m into o for U: o = h? mod n, where h = H(m).
S wants to send a message M to U, if U owns a valid signature:
@ U chooses a random scalar x, and sends u = (ch*) mod n;
@ S chooses a random scalar y, and computes r = u® h™Y mod n.
It sends v = h¥ mod n, and a encryption of the message M
under the symmetric key k = H'(r);

@ U computes r' = v¥* mod n, and k' = H'(r’).

Correctness:
r=u¥hY =c¥WYh Y = h9WYhY — b — v* = ¢ mod n.
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Examples

One-Round OSBE from IBE

[Li, Du, Boneh, 2003]

The authority owns the master key of an IBE scheme,
and provides the decryption key (signature) associated to mto U.
S wants to send a message M to U, if U owns a valid signature.

@ S encrypts M under the identity m.
Security properties:

@ Correct: trivial

@ Oblivious: no message sent!

@ Semantic Security: IND-CPA of the IBE
But the authority can decrypt everything!
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Our Scheme

A Stronger Security Model

S wants to send a message M to U, if U owns/uses a valid signature.

Security Notions

@ Escrow-free (Oblivious w.r.t. the authority):
the authority does not know whether U uses a valid signature
(and thus gets the message);

@ Semantic Security: U cannot distinguish
multiple interactions with S sending Mg
from multiple interactions with S sending M;
if he does not own/use a valid signature;

@ Semantic Security w.r.t. the Authority: after the interaction,
the authority does not learn any information about M.

Oblivious Signature-Based Encryption
08000

Our Scheme

A New OSBE

S wants to send a message M to U, if U owns a valid signature o
on m under vk:

With a Smooth Projective Hash Function

The user U and the sender S use a smooth projective hash system
for L: C = Epk(a; r) contains a valid signature o of m under vk

@ the user U sends an encryption C of o;

@ A generates a hk and the associated hp,
computes Hash = Hash(hk; C),
and sends hp together with c = M & Hash;

@ U computes Hash = ProjHash(hp; C, r), and gets M.

Ecole Normale Supérieure David Pointcheval
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Our Scheme

Security Properties

@ Oblivious/Escrow-free: IND-CPA of the encryption scheme
(Hard-partitioned Subset of the SPHF);

@ Semantic Security: Smoothness of the SPHF

@ Semantic Security w.r.t. the Authority:
Pseudo-randomness of the SPHF

Semantic Security w.r.t. the Authority requires one interaction
— round-optimal

Standard model with Waters Signature + Linear Encryption
— CDH and DLin assumptions

Ecole Normale Supérieure David Pointcheval
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Our Scheme

Lin-compatible SPHF

@ encryption key pk = (Y1 = g”1, Yo = 9°2)
@ ciphertext C = (¢1 = Y{',co = 2,03 = g2 x M)
Lin(pk, M): language of the ciphertexts of M
An SPHF for Lin(pk, M) can be:
HashKG(Lin(pk, M)) = hk = (x1, Xz, 3) & 73
ProjKG(hk; Lin(pk, M), C) = hp = (Y;1 g™, Y,29™)

¢y' ¢;*(cs/M)*® = hp} hpz

This basically shows that
(c1, Co, c3/M) is a linear tuple in basis (Y1, Yz, 9)
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Our Scheme

SPHF for Linear Encryptions of Waters Signatures

@ verification key vk =Y = g¥ (sk= X = h¥)

@ signature o = (o1 = X x F(M)%, 02 = 9°)

@ encryption key pk= (Y; = g”1, Yo = 9’2)

@ ciphertext C = (¢y = Y1r1,02 = y2f’2’ C3 = g’1+'2 X 01,02)
WLin(pk, vk, M): language of the ciphertexts of signatures of M

C1 = e(c1,9), C2 = e(c2, 9), Cs = e(cs, g)/(e(h, vK) - e(F(M), 52))

is a linear tuple in basis (e(Y1,9),e(Y2,9),e(g.9)) in Gr.
An SPHF for WLin(pk, vk, M) can be:

HashKG(WLin(pk, vk, M)) = hk = (x1, Xz, X3) & 73
ProjKG(hk; WLin(pk, vk, M),C) = hp = (Y{g*, Y;29®)
e(ci,9)"e(cz, 9)?(e(cs, g)/(e(h, Y)e(F(M), 02)))® = e(hp{ hoz, g)

Ecole Normale Supérieure David Pointcheval
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Conclusion

Smooth Projective Hash Functions
can be used as implicit proofs of knowledge or membership

Various Applications

@ IND-CCA

e PAKE

@ Certification of Public Keys
Privacy-preserving protocols

@ Blind signatures

@ Oblivious Signature-Based Envelope

— Round optimal!

[Cramer, Shoup, 2002]
[Gennaro, Lindell, 2003]

[Abdalla, Chevalier, Pointcheval, 2009]

Work in progress: many more applications. ..
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