Formal models of timed systems:
WCET analysis in single-core systems,
and some ideas for multi-core systems

Jean-Luc Béchennec Sébastien Faucou
CAPITAL Workshop - 4th of June 2021

Université de Nantes, CNRS, LS2N
F-44000 Nantes, France

About this talk

This talk is about a work carried out in our group since a few years
concerning the use of real-time model-checking to estimate the
WCET of programs

- The work was initiated by Franck Cassez (now with ConsensSys
Software R&D)

- Quickly joined by Jean-Luc Béchennec

- And a bit later by Mikael Briday, Sébastien Faucou and Armel
Mangean

About this talk

Talk is split in 2 parts

- Review of past work concerning single-core systems
- Sébastien Faucou

- Demo of on-going works concerning multi-core systems
- Jean-Luc Béchennec

Real-time model-checking for WCET analysis:
motivations and overview

The WCET problem

Given a system S composed of:

A program P A micro-architecture A

00003000 <_start>: core 1 ‘ DMA ‘ ‘ 10 ‘

3000: 1i r1,1 ;rl <- 1

3004: ori rl1,rl,49296 ;rl <- rl | 49296

3008: bl 3010 ;call main
0000300c <loop>:

300c: b 300c ;branch
000030160 <main>: .

3010: i rs8,29 ;r8 <- 29 Bus Arbiter

3014: 1i rlo,1 ;r10 <- 1

3018: mtctr r8 ;ctr <- r8

301c: 1i r9,1 ;r9 <- 1 ‘ RAM ‘ ‘ NVM ‘ ‘ 10 ‘

3020: b 3028 ;branch

3024: mr r9,r3 ;r9 <- r3

3028: add r3,r9,r10 ;T3 <- r9+rl0

302c: mr rlo,r9 ;r1e <- r9

3030: bdnz 3024 ;ctr--,

;branch if ctr!=0
3034: blr ;return

Find an upper-bound on the execution time of P on A

The WCET problem (cont’d)

The WCET bound does not necessarily corresponds to a run of S: any
value greater than or equal to the actual WCET is valid

actual WCET

L

#run

domain of valid
WCET bounds

exec time

The WCET problem (cont’d)

To derive a WCET bound, one needs to combine:

- Program analysis
- which instructions are executed? how many times?

- Architecture analysis
- how long does it take to execute each instruction?

Real-time model-checking

Real-time model-checking =
automated verification of timed models.

Timed models: discrete event formalism extended with real-valued
clocks, e.g., timed automata, or time Petri nets.

activate?

mint_clk =0 mint_clk <= MINT Error

0 0 ®
mint_clk < MINT

mint_clk == MINT activate?

Ex: monitoring of a sporadic task with a minimal inter-arrival time

Real-time model-checking (cont’d)

Real-time model checkers:

- Powerful abstractions to represent and manipulate the
dense-time part of the state (e.g., DBM, zone)

- But have to relie on an explicit representation of the discrete
part (no BDD/ZDD, no efficient partial order)

We have experimented with 2 tools:

- UPPAALY based on timed automata
- Romeéo? based on time Petri nets

Both offer:

- modular models with synchronization between processes
- finite variables to model the discrete part of the state
i late the discrete part of the state

'https://uppaal.org/
’http://romeo.rts-software.org

https://uppaal.org/
http://romeo.rts-software.org

Motivation for investigating real-time MC for WCET analysis

Pipeline stages, cache, memory controllers, buses are concurrent
components that evolve and synchronize in real-time

WCET analysis asks to analyse their timing behavior.

At first sight, real-time model-checking is precisely done for this type
of job. It seems an interesting direction to explore for WCET analysis.

Expected advantages and disadvantages

With real-time model-checking, the analysis is based on the
exploration of traces

- When an instruction is executed, its actual execution time is
defined by the current state

- Thanks to context-sensitive execution times, we expect to obtain
accurate bounds

- In case of missing/unknown information, the trace is split to
account for the different cases.

"initial cache content, input data,
contention latency, ...

- We cannot expect to support too much missing/unknown
information

Open questions that we wanted to explore

- It will certainly face scalability issues
- is it even usable?

- Since the analysis is based on traces, it should be "closer” to

the real system
- how accurate is it ?

- Exhaustivity ensures correctness in the presence of so-called
timing anomalies (close to non sustainability in scheduling)
- is it a golden bullet?

Overview of our approach

GivenS =P x A
1. Compute an abstract model
P of P (fully automated)

A
| 2. Build an abstract model A of
v A (not automated but needs
A to be done only one time)
3. Compute an abstract model
S =P x Aof S (fully
automated)
4. Search for the WCET of § with

WCET a model-checker (fully
Model-checker }< Trace automated)

Counters

o)

1

Modeling a program

Basic intuition of program models

A program is a sequence of instructions + a set of memory locations

- We are only interested in binary programs.

-+ An intuitive representation is an automata/Petri net such that:
- each instruction is associated with a location/place
- a control flow between two instructions is denoted by an

edge/transition
- This is an untimed model: a program is inactive
- This intuitive representation proved to be relevant for
visualization and debugging

- Memory locations are represented by variables
warning: explicit representation in the state

3000

3004 |ori r1,r1,49296"

2028
_302¢
_3030
3034

true

true

true

true

true

true

true

true

true

true

true

true

Inz()

true

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

fetch!

pipeline(_3000,true),
execute(_3000)
pipeline(_3004,true),
execute(_3004)
pipeline(_3008,true),
execute(_3008)
pipeline(_300c,true),
execute(_300c)
pipeline(_3010,true),
execute(_3010)
pipeline(_3014,true),
execute(_3014)
pipeline(_3018,true),
execute(_3018)
pipeline(_301c,true),
execute(_301c)
pipeline(_3020,true),
execute(_3020)
pipeline(_3024,true),
execute(_3024)
pipeline(_3028,true),
execute(_3028)
pipeline(_302c,true),
execute(_302c)
pipeline(_3030,!nz()),
execute(_3030)
pipeline(_3034,true),
execute(_3034)

hi pipeline(_3030,nz()),

Objectives of program abstraction

Execution of an instruction is split in two parts:

: updates the

,eg., memory locations
- impact on the state of caches
- traversal of pipeline
- Of memory accesses

Observation

For WCET analysis, an update to a memory location can be
discarded

Corrolary: the content of a memory location does not need to be
tracked if all its updates can be discarded.

14

Example

00003000 <_start>:

3000:
3004:
3008:

0000300c

300c:

00003010

3010:
3014:
3018:
301c:
3020:
3024:
3028:
302c:
3030:

3034:

1i
ori
bl
<loop>:
b
<main>:
1i
11
mtctr
11
b
mr
add
mr
bdnz

blr

rl,1
rl,r1,49296
3010

300c

r8,29
rl10,1

r8

r9,1

3028
r9,r3
r3,r9,rl10
rl0,r9
3024

;rl <—
;ri <-

1
rl | 49296

;jcall main

;branch

;r8 <—
;rl0 <-—
;ctr <-—
;r9 <-
;branch
;r9 <—
;r3 <—
;rl0 <-—
g @Lie==
;branch
;return

29
1
r8
1

r3
r9+rl10
r9

if ctr!=0

Which registers do we need to track to compute the value of ctr at
instruction 30307

00003000 <_start>:

3000: 11 rl,1 B, <=

3004: ori rl,rl,49296 ;ri <- rl | 49296

3008: Dbl 3010 ;jcall main
0000300c <loop>:

300c: Db 300c ;branch
00003010 <main>:

3010: 1i r8,29 ;r8 <- 29

3014: 1i r1l0,1 ;r10 <- 1

3018: mtctr r8 ;etr <— r8

301c: 1i r9,1 prY <= 1

3020: b 3028 ;branch

3024: mr r9,r3 ;r9 <- r3

3028: add r3,r9,rl0 ;r3 <= r9+rlo0

302c: mr rl0,r9 ;rl0 <- r9

3030: bdnz 3024 ;etr——,

;branch if ctr!=0
3034: Dblr ;return

Which registers do we need to track to compute the value of ctr at
instruction 30307

Program slicing to the rescue

Program slicing = techniques to compute a subprogram which is
equivalent to a program wrt. a set of variables and a set of
locations?.

For WCET analysis:

1. Find a subprogram that reaches the end node with the same
control flow.

2. Build a model that tracks the content of a memory location iff it
appears in this subprogram.

Interactions with the micro-architecture (incl. memory accesses) are
not modified.

3Kiss et a., Interprocedural Static Slicing of Binary Executables. In Int. Work. on
Source Code Analysis and Manipulation, 2003.

16

3000

3004 |ori r1,r1,49296)

_300c
3010
3014
3018
_301c

3020

3024
2028
_302¢
3030
3034

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

true fetch!

Inz() fetch!

true fetch!

pipeline(_3000,true),
execute(_3000)
pipeline(_3004,true),
execute(_3004)
pipeline(_3008,true),
execute(_3008)
pipeline(_300c,true),
execute(_300c)
pipeline(_3010,true),
execute(_3010)
pipeline(_3014,true),
execute(_3014)
pipeline(_3018,true),
execute(_3018)
pipeline(_301c,true),
execute(_301c)
pipeline(_3020,true),
execute(_3020)
pipeline(_3024,true),
execute(_3024)
pipeline(_3028,true),
execute(_3028)
pipeline(_302c,true),
execute(_302c)

pipeline(_3030,!nz()),

execute(_3030)

pipeline(_3034,true),
execute(_3034)

nz() fetc

hi pipeline(_3030,nz()),
" execute(_3030)

pipeline(_3000,true)

_3000 true fetch!
3004 [ori r1,r1,49296) true fetchi PiPeline(_3004.true)
true fetchl pipeline(_3008,true)

true fetchl pipeline(_300c,true)

\ , pipeline(_3010,true),
= frue fetch! execute(_3010)

true fetch! pipeline(_3014,true)

pipeline(_3018,true),

true fetch! execute(_3018)

true fetch! pipeline(_301c,true)
3020 true fetch! pipeline(_3020,true)
3024 true fetchl pipeline(_3024,true)
3028 [add 13,9,r10 true fetch! Pipeline(_3028 true)
302¢ true fetcn PIPeline(302c true)

| | pipeline(_3030,!nz()), | pipeline(_3030,nz()),
_3030 |bdnz 3024 Inz() fetch! execute(3030) or |nz() fetch! execute(3030)

3034 pipeline(_3034,true)

true fetch!

BEST

BEST: a Binary Executable Slicing Tool*

Program

binary
executable

HARMLESS
C++

l BEST
C++ / LEMON
powerpc | | CFG program
module reconstruction slicing
| |
Enhanced ¢ ¢
semantic

disassembler
UPPAAL

or Dot file

UPPAAL
or Dot file

Base Abstracted
model model

“Mangean et al., BEST: a Binary Executable Slicing Tool. In Int. Work. on Worst-Case
Execution Time Analysis, 2016.

Efficiency of slicing for WCET analysis (cont’d

Binary programs compiled from Malardalen benchmarks to PowerPC
with GCC and COSMIC C, sliced with BEST.

Evaluation of registers whose contents do not need to be tracked

Senr e GCe Cosmic C
-00 -01 -02 -03 -no default
adpem. ¢ 1/17,35% | 28/32,13% | 26/28, 7% | 33/36, 8% || 22/37, 41% | 22/37, 41%
bs.c 7/11,36% | 10/13,23% | 9/10, 10% 9/10, 10% 10/14,29% | 11/13,15%
bsort160.c 9/12,25% | 13/18,28% | 11/16,31% | 11/16,31% || 13/15,13% | 13/15,13%
cnt.c 10/15,33% | 13/18,28% | 10/16,38% | 10/18, 44% || 10/37,73% | 10/37,73%
compress.c 15/19, 21% | 26/31,16% | 30/33, 9% | 32/35, 9% || 21/37, 43% | 21/37, 43%
crc.c 8/17,53% | 14/23,39% | 10/19,47% | 9/19,53% 18/37,51% | 18/37,51%
expint.c 8/13,38% | 16/26,38% | 4/11, 64% 4/1, 63% 14/37,62% | 14/37, 62%
fdct.c 6/13, 54% 4/21, 81% 4/30, 87% 3/33,91% 3/35,91% 3/35, 9%
fibcall.c 7/11, 36% 7/12, 42% 3/7, 57% 3/7, 57% 6/12,50% | 6/10, 40%
fir.c 7/16,56% | 13/22, 41% | 14/21,33% | 14/21,33% || 15/37,59% | 15/37, 59%
janne_complex.c 7/12, 42% 6/9, 33% 6/8, 25% 7/9, 22% 7/36, 81% 7/8, 13%
jfdctint.c 8/1,27% 3/15, 80% 4/25,84% | 4/33,88% 3/35,91% 3/34,91%
matmult.c 10/19, 47% | 15/20,25% | 15/19,21% | 13/19,32% || 8/37,78% | 8/37,78%
ndes.c 9/17,47% | 21/27,22% | 23/26,12% | 27/28, 4% || 16/37,57% | 15/37,59%
ns.c 9/14,36% | 13/17,24% | 13/15,13% | 9/12,25% || 14/37,62% | 14/36,61%
prime.c 10/13,23% | 6/9, 33% | 6/9, 33% | 6/8, 25% || 11/36,69% | 12/36, 6%
Average 38% 35% 36% 37% 59% 54%
37% 57%

of registers in the slice / total # of register used in program,
gain in percentage (the higher the better).
19

Modeling the micro-architecture

The model of the architecture:

- Should allow cycle accurante execution of instruction
= itis atimed model

- But should not mimic the actual design of the
micro-architecture

- In particular, semantics of an instruction should be executed
independantly from the interaction with the micro-architecture

Any transformation that preserves the behavior and decrease either
the size of the discrete state or the number of state is welcome!

20

Modeling style

After several trials, we have adopted the following modeling style:

- the C-like language is used to define and manipulate the
discrete part of the state

- the TA/TPN part is used for handling clocks and
synchronizations

Our early models integrated too much timing and functional aspects.
A clear separation offers more possibilities of abstraction, e.g.,

- actual content of the cache is not needed (only the tag & valid
bit)

- ALU does no computation, it is just a stage to add a delay
according to the class of the instruction

- speculation and rollbacks can be pre-computed offline and
integrated in the model of the program

21

Example: UPPAAL model of mem

Part of the model inspired from PowerPC e200z4 micro-architecture

Flash_doneBurst[0]7
IMU_clock = 0

IMU_ICache_Miss()

- Instruction cache only

ash_doBurs
_M_ICacheMiss++ MU_ICache Hit() |
N fer_Hit(

IMU_clock <= 1

- On cache-hit, instruction is

MU Set) IMU_clock == 1

sent to the pipeline in 1 cycle
- On cache-miss, a burst access
is required (8 4-bytes words)
- Burst is received in a
FillBuffer

Flash.burst_index == FLASH_BURST_MAX
Flash_doneBurst[Flash burst index]!
IMU_FillBuffer_Update()
IMU_ICache_Update()

u_f -_Set),
Flash.burst_index = 0.

- Burst starts with the
requested word latatear

22

Example: UPPAAL model of cache update (pseudo-RR)

void IMU_ICache_Update() {
// on a miss, insert the current instruction on the instruction cache

int addr = _INSTS[IMU.FillBuffer.index].addr;
int[@, IMU_WAYS_MAX] way;
int[0, IMU_SETS_MAX -1] set = (addr / 32) % IMU_SETS_MAX;

int tag

addr / (32 = IMU_SETS_MAX);

bool found = false;

way = 0;
while (!found &5 way < IMU_WAYS_MAX)
if (IMU.ICache.tags[way]l[set] == -1)

found = true;
else ++way;
if (found) {
// free slot found
IMU.ICache.tags[way][set] = tag;
} else {
// no free slot found (pseudo round-robin replacement policy)
way = IMU.ICache.rp_way;
IMU.ICache.tags[way]l[set] = tag;
IMU.ICache.rp_way = (IMU.ICache.rp_way +1) % IMU_WAYS_MAX;

23

Validation

Validation of the hardware model is the most difficult part

- Documentation of micro-architecture generally lacks precision

- Micro-benchmarks can be used to fill in the gaps in the
documentation but it is a tedious job with no completness
guarantee

- Moreover, complexity of models is high enough to raise
concerns

- C-like language is not a 1st class citizen in UPPAAL/Roméo

- Model-checking can be used to verify some properties but we
can only find the bugs that we are looking for.

24

WCET analysis

WCET, execution trace, counters

Both UPPAAL and Roméo provide dedicated algorithms to search for
the maximum value of a clock

- UPPAAL: sup: _clock
- Roméo®: maxcost(Program: :END_INST == 1)

The result is composed of:

- avalue: the WCET bound

- atrace: a run of P on A that yields the WCET bound

- A can be instrumented to also embed performance counters
(e.g., cache hit/miss or BTB hit/miss)

If the control flow of the program is independant from unknown
input-data, the trace can be replayed on the real system.

>In practice, we need to search the mincost of a negative value

25

About the tightness of the estimation

We did once the effort to validate closely hardware models®

- Model of an ARM9TDMI core by micro-benchmarking of the
system
- some hidden architectural features have been discovered using
puBenchmarking but some were probably not
- Ad-hoc program slicing
- WCET analysis with UPPAAL
- Then measurements were done on the real hardware

- for programs with input-dependant control flow, worst-case inputs
were used but the measure must be considered as a lower bound
of the actual WCET

6Cassez F. and Béchennec J.-L., Timing Analysis of Binary Programs with UPPAAL, in
13th Int. Conf. on Application of Concurrency to System Design, 2013

26

About the tightness of the estimation

Program [Analysis time | # States | Analysed WCET [Measured WCET | Error
Single-path programs
fib-00 2s 74,181 8,098 8,064 0.42%
fib-01 0.6s 22,333 2,597 2,544 2.0%
fib-02 0.3s 9,711 1,209 1,164 3.8%
jane-complex-00 1.7s 38,038 4,264 4,164 2.4%
jane-complex-01 0.5s 14,600 1,715 1,680 2.0%
jane-complex-02 0.5s 13,004 1557 1,536 13%
fdct-01 21s 60,534 4,245 4,092 37%
fdct-02 3.2s 55,285 19,231 18,984 13%
Single-path programs w/ data dependant instr. durations
fdct-00 124s 85,008 11,800 11,448 3.0%
matmult-00 217s 10,531,262 529,250 528,684 0.1%
matmult-O1 25s 1,112,527 156,367 153000 22%
matmult-02 121s 6,780,931 148,299 140,664 5.4%
jfdcint-00 92s 100,861 12918 12,588 2.6%
jfdcint-01 12s 35,419 5,072 4,688 8.6%
jfdcint-02 5.38s 175,661 16,938 16,380 3.4%
Multi-path programs (input data dependant control flow)
bs-00 30s 1,421,274 1068 1,056 1.1%
bs-01 23s 1,214,673 738 720 2.5%
bs-02 12s 655,870 628 600 4.6%
cnt-00 4s 77,002 9,027 8,836 2.1%
cnt-01 l4s 27,146 4,123 3,996 31%
cnt-02 9s 11,490 3,067 2928 4.6%
insertsort-00 598.98s 24,250,738 3133 3108 0.8%
insertsort-01 353.80s 11,455,293 1533 1500 22%
insertsort-02 11.68s 387,292 1326 1320 0.4%
ns-00 60s 3,064,316 30,968 30,732 0.8%
ns-01 8s 368,720 11,701 11,568 11%
ns-02 55s 1,030,746 7280 7236 0.6%

27

WCET analysis of multicore systems (WIP)

Architecture modeling

Using the Roméo tool (Time Petri Net)

- Simple architecture with 2-stages pipeline (Fetch + Execute)
- Handle the Load/Store multiple words of ARM Cortex

- Small 512 bytes direct mapped instruction cache

- No data cache

(doFetch[Sany] == 0) && (isHit[$any] == I) R
e ICacheHit
1 0:0 | doFetch[Sany] = 1; e Sany] =0
N
$any] == 0) && [

[0:0
* CacheMiss BusAccess Mny] > 0) && (lockBus =85ggssCount >0
001 g 9 5 ’

ccessCount = accessCount - 1;
TockBus=17
Mem =
(i

ckBus = 13 0: 0 |
BusAvailabl " y
us Available ™Ry accessCount = ac[Sany]:

Fetch1 doFetch{Sany] == 0

any]==0) &&

accessCount == 0
lockBus =0

4]

[0:0]

28

Program modeling (1)

Cortex MO+ binary code of bsort compiled with -02 optimization (no
slicing)

offephisany] == |

1 0000804c <BubbleSort>:

2 804c: b570 push {r4, r5, r6, lr}

3 804e: 2463 movs r4, #99 ; 0x63

4 8050: 1d06 adds r6, r0, #4

5 8052: 0033 movs r3, r6 S
6
7
8

8054: 2201 movs r2, #1)
8056: 2501 movs r5, #1
8058: e00a b.n 8070 <BubbleSort+0x24>
9 805a: 6819 ldr r1, [r3, #0]
10 805c: 6858 ldr ro, [r3, #4]
n 805e: 4281 cmp r, ro
12 8060: dd02 ble.n 8068 <BubbleSort+0x1c>
13 8062: 2500 movs r5, HO
14 8064: 6018 str ro, [r3, #0]
15 8066: 6059 str 1, [r3, #4]
16 8068: 3201 adds r2, #1
17 806a: 3304 adds r3, #4
18 806C: 2ab4 cmp r2, #100 ; O0x64
19 806e: d001 beq.n 8074 <BubbleSort+0x28>
20 8070: 4294 cmp r4, r2
21 8072: daf2 bge.n 805a <BubbleSort+0xe>
22 8074: 2d00 cmp r5, #0
23 8076: d102 bne.n 807e <BubbleSort+0x32>
24 8078: 3c01 subs r4, #1
25 807a: 2c¢00 cmp r4, #O
26 807c: d1e9 bne.n 8052 <BubbleSort+0x6>
27 807e: bd70 pop {r4, r5, r6, pc}

1 # inseB06a(stSanyl.mem{Sany)):
1=0;

A — 29

Program modeling (2)

T
2
3
4
5
6
7
8
9

int inst8078(core_t &core, mem_t &mem) { // 8078:

core.regs.r[4] = core.regs.r[4] — 1;
updateSR(core.regs, core.regs.r[4]);
return cacheAccess(core.ICache, 32888);

}

int inst807a(core_t &core, mem_t &mem) { // 807a:

uint32_t val = core.regs.r[4] — O;
updateSR(core.regs, val);
return cacheAccess(core.lCache, 32890);

}

int inst807c(core_t &core, mem_t &mem) { // 807c:

return cacheAccess(core.ICache, 32892);

}

int inst807e(core_t &core, mem_t &mem) { // 807e:

subs r4, #1

cmp r4, #0

bne.n 8052

pop {r4, r5, r6, pc}

core.regs.r[15] = memRead(mem, core.regs.r[13] + 0);
core.regs.r[6] = memRead(mem, core.regs.r[13] + 4);
core.regs.r[5] = memRead(mem, core.regs.r[13] + 8);
core.regs.r[4] = memRead(mem, core.regs.r[13] + 12);

core.regs.r[13] = core.regs.r[13] + 16;
return cacheAccess(core.lCache, 32894);

30

Phased opponent modeling

on1 doFetch{Sany
1 0; 0 doFetchiSany

(doFetch{$any]
ICacheHit

——

10;0

BusAccess

aceessCount

v1>0 && lockBus

accessCount = accessCount

i
144

sCoun

aclsanyl;
lockBus == 0

Comput

prologAc

ssCount

lockBus =0;
1 500; 1006qmpute BT

5 Memory
10:0

[0:01

31

[0:0

Conclusions and future work

Conclusions

- Of course there are scalability problems. Naive modeling
generally leads to an explosion of the state space

- The more uncertainties there are about the behavior of a
program, the greater the number of traces to explore (Timed
model checkers use symbolic states for time but not for discrete
variables)

- Aggressive yet accurate abstraction techniques can enable
effective use of these methods

As is often the case, going from a research prototype to
industrial-grade tool will require a huge engineering effort.

32

Future work

- Detection of temporal anomalies using observers added to the
model
- Aggressive abstractions for multi-core:
- slicing to reduce programs to memory accesses
- taking into account the phases in the behavior of the programs
- Ad-hoc model checking techniques taking into account the
specificities of the problem

33

Thanks for your attention!

