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e Front-end in the previously presented compilation chain
o Based on the synchronous compiler Heptagon
e Orthogonal to the architecture used

2/24



Context of the presentation

@ Link with the previous presentation:

e Front-end in the previously presented compilation chain
o Based on the synchronous compiler Heptagon
e Orthogonal to the architecture used

@ In relation to Lopht:

e Manage the harmonic multi-periodic aspect
o Normalization of the input Lustre program + annotations

@ Other motivations:

o Make specification easier to write manually in Lustre
e Using more information which could be specified
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Introduction
©000

Background - Synchronous language

@ Manipulate infinite flow of values
@ Global tick synchronize the production of values
@ Point-to-point operators

@ Accessing past values possible ("fby" ~ memory)

42 42| 42 | 42 | 42
X4y 4 | -1\ 2
42 fby y || 42| 4 | -2 | 1
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Introduction
0e00

Background - Clocks

A stream might have no value on a tick
Clock: x :: clk

e Encode the presence of a value
e Can be an arbitrary boolean stream

Temporal operators: sub-sampling (when) and fusion (merge)

Clocking analysis: check coherency of clocks

X i C oOj1]1]2
b e t| f|t]|t
z=xwhenb :conb 0O —1]1]2
y mconnotb| — 42| — | —
merge bzy ¢ 04212
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Introduction
coeo

Background - Lustre

e Equational language for synchronous programs
(similar languages: Scade, Heptagon, ...)

node accumulator(i : int) returns (o : int)

var x : int
let
x = 0 fby o;
o=x+41i
tel
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Introduction
coeo

Background - Lustre

e Equational language for synchronous programs
(similar languages: Scade, Heptagon, ...)

node accumulator(i : int) returns (o : int)

var x : int
let
x = 0 fby o;
o=x+41i
tel

o Code generation:

o "reset" and "step" functions
o Infinite "while" loop (1 iteration = 1 base tick)
o Clocks: encoded using "if" conditions
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Background - N-synchronous model

@ N-synchronous model:

o Ultimately periodic clocks
e Example: 101(1001)
e Strictly periodic: no initialization phase

= Clocking analysis becomes more predictable
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Background - N-synchronous model

@ N-synchronous model:

o Ultimately periodic clocks
e Example: 101(1001)
e Strictly periodic: no initialization phase

= Clocking analysis becomes more predictable

o buffer: Communication between variables on two different
clocks
o Clocks must be compatible (adaptability relation: <:)
= Able to compute the size of a buffer
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1-synchronous clocks

o Consider integration program:
Top-level node, orchestrating all tasks of an application

o Multiple harmonic periods (ex: 5ms /10 ms /20 ms / ...)
e Tasks are present only once per period

7/24



Introduction
®0

1-synchronous clocks

o Consider integration program:
Top-level node, orchestrating all tasks of an application

o Multiple harmonic periods (ex: 5ms /10 ms /20 ms / ...)
e Tasks are present only once per period

e 1-synchronous clocks: "(0K10""%~1)" (or "0k(10"~1)")
with 0 < k < n, n = period and k = phase

7/24



Introduction
®0

1-synchronous clocks

o Consider integration program:
Top-level node, orchestrating all tasks of an application

o Multiple harmonic periods (ex: 5ms /10 ms /20 ms / ...)
e Tasks are present only once per period

e 1-synchronous clocks: "(0K10""%~1)" (or "0k(10"~1)")
with 0 < k < n, n = period and k = phase

@ Integration program: only 1-synchronous clocks are used
~+ Can use that condition to do more inside a compiler
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In this talk

Three incremental modifications on top of Lustre:
@ Restriction of the clock calculus to 1-synchronous clocks

e Specialization of the N-synchronous clocks
e Associated specialized clocking rules
o Code generation possibilities (Hyperperiod Expansion)
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Introduction
oe

In this talk

Three incremental modifications on top of Lustre:
@ Restriction of the clock calculus to 1-synchronous clocks
e Specialization of the N-synchronous clocks

e Associated specialized clocking rules
o Code generation possibilities (Hyperperiod Expansion)

@ Phases of the clock of some variables are not specified
e Kahn semantic satisfied, dataflow semantic not
e Constraints on phases obtained from clocking rules
e Solution used to go back to fully-specified Lustre program

© Non-deterministic computation

Don’t mind which instance of a value used
Neither semantics are satisfied

More freedom for phase selection

Go back to deterministic program
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1-synchronous clocks
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1-synchronous clock calculus - Same period

@ Clock calculus restricted to 1-synchronous clocks.
~> What happens to temporal operators?
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1-synchronous clock calculus - Same period

@ Clock calculus restricted to 1-synchronous clocks.
~> What happens to temporal operators?

o (buffer: phase not specified ~> not yet)

o delay: increment the phase of the clock / delay(d) = delay
e Should not cross the period (no initialization)

HFa:(0k10" % 1) 0<d<n—k
H I delay(d) a :: (0ktd10n—(k+d)-1)
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1-synchronous clocks
®00

1-synchronous clock calculus - Same period

@ Clock calculus restricted to 1-synchronous clocks.
~> What happens to temporal operators?

o (buffer: phase not specified ~> not yet)
o delay: increment the phase of the clock / delay(d) = delay
e Should not cross the period (no initialization)

HFa:(0k10" % 1) 0<d<n—k
H  delay(d) a :: (0k*td107—(k+d)-1)
o delayfby(d): (initialization required / ~ "short fby")

HE 3 (Oklonfkfl) HE i (0ktd=nion—(k+d—n-1y Q< k+d—n<n

H - i delayfby(d) a :: (0k+d=n10n—(k+d=n)-1)
delay delay(2)

T NSNS Wi, N
2 3\4p 1 2 3

1
0 delavfbv(1) 0 9/24
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Toward slower periods (when)

Clocks must be 1-synchronous + subclock condition:
= Harmonicity condition
= Argument of the when must be of the form "(FK TFn—k=1)"
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Toward slower periods (when)

Clocks must be 1-synchronous + subclock condition:
= Harmonicity condition
= Argument of the when must be of the form "(FK TFn—k=1)"

qxn+k

y = x when (FTF)

HFa: (0k10"%1 m=pn I=qgn+k
Ht a when (FITFP~179) :: (0'10™/1)
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1-synchronous clocks
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Toward faster periods (merge/current)

Clocks must be 1-synchronous + subclock condition:
= Harmonicity condition

@ merge: one branch per instance of fast period
e current (repetition of a value, with eventual updates)

o Argument (when the update occurs) must be "(Fk TFr—k=1)"
o Initialization needed ("i")
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ooe

Toward faster periods (merge/current)

Clocks must be 1-synchronous + subclock condition:
= Harmonicity condition
@ merge: one branch per instance of fast period

e current (repetition of a value, with eventual updates)

o Argument (when the update occurs) must be "(Fk TFr—k=1)"
o Initialization needed ("i")

y = current((FTF), 0, x)

71X YN /X
B Pinar ue s
g x mt |
HFa: (0k10"%1Y) HEj:(010m "1 n=pm I=k-mgq

H b current((FITFP~179) j a) :: (0'10m~/-1)
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Code generation

@ Use 1-synchronous restriction to generate efficient code

e Know exactly when the activation will happen
o All "buffer" are of size 1 ~» memory cell
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1-synchronous clocks
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Code generation

@ Use 1-synchronous restriction to generate efficient code

e Know exactly when the activation will happen
o All "buffer" are of size 1 ~» memory cell

@ Three code generation schemes:
o Classical step function (base clock)
o If conditions
o One step function per phase (base clock)
@ No if conditions / while loop looping on them in order
o One step function for the whole period (slowest clock)
= Hyperperiod expansion transformation
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Hyperperiod expansion - Example

Idea: change base period to a slower one (ex: scm of all periods)
= (duplicate fast computation)
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1-synchronous clocks
0®00

Hyperperiod expansion - Example

Idea: change base period to a slower one (ex: scm of all periods)
= (duplicate fast computation)

Example:
Input:  x :: (1)
Local: a:: (1), b:: (10)
a = f(x); // f stateless
b = g(awhen (10)); // g stateless

Input:  xo, x1 :: (1)
Local: ag, a1, b :: (1)

ap = f(xo);
a1 = f(x1);
b = g(ao);
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Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
e r(Var) € N*: ratio between Var's period and slowest period
e Variable duplication: Var ~ Varg, ..., Var,(var)-1
@ Applied on a normalized program

e Each equation is duplicated r(/hsVar) times
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1-synchronous clocks
coeo

Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
e r(Var) € N*: ratio between Var's period and slowest period
e Variable duplication: Var ~ Varg, ..., Var,(var)-1
@ Applied on a normalized program

e Each equation is duplicated r(/hsVar) times

Some interesting rules (informaly written):
e a=op(bl,...,bm) = a; =op(bl;, ..., bm;)for0<i<r
ea=ifbyb=ay=ifbyb,_;|aj=b_1forl<i<r
ea=>bwhen (FPTF P 1)= 4 = bptixn for 0 <i < r(a)
e a = current((FP T F"~P~1), init, b)

a; = init; fby bypy—1 for0<i<p

aj = bjis for p<i<r(a)

n

=
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Hyperperiod expansion - Discussion

o Positive points:

o Get rid of the multi-periodic aspect
o Natural way to manage long tasks (with no cutting)
e Decouple the phases of different instances of a variable
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1-synchronous clocks
ocooe

Hyperperiod expansion - Discussion

o Positive points:
o Get rid of the multi-periodic aspect
o Natural way to manage long tasks (with no cutting)
e Decouple the phases of different instances of a variable

o Negative points:
o Stateless functions needed
(If stateful, need to expose the internal state and pass it
+ reset function to get initial state
+ at annotation to reuse the memory of states)
o Additional real-time constraints needed on inputs/outputs
(release/deadline)
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Unknown phases
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The problem with phases

@ Phases = large-grain schedule across the periods

— "Good" choice of phases is architecture dependent
(sequential: WCET balancing / parallel: ... more complicated)
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Unknown phases
[ Jelelelo)

The problem with phases

@ Phases = large-grain schedule across the periods
— "Good" choice of phases is architecture dependent
(sequential: WCET balancing / parallel: ... more complicated)
@ Phase computation is tedious to write and modify:
e One phase modification impacts many equations
e Humanly impossible for large applications

=- Choice of phases should be separated from the computation

o Modification proposed:
e Option to only define the period of some local variables
o Implicit buffers operator (clock of rhs <: clock of |hs)
o Compilation flow:

o Clocking analysis gathers the constraints on phase
e Solver finds a solution (given cost function)
o Use this solution to explicit phases and buffer (— delay)
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Unknown phases
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Extracting constraints from clocking rules

o buffer: delay of an unknown length
o (0K10"%=1) <: (0'10m~'~1) iff m=nand k </

HFa: (0k10"%1) 0<k<I<n
H + buffer a :: (0'107~/~1)
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Unknown phases
0®000

Extracting constraints from clocking rules

o buffer: delay of an unknown length
o (0K10"%=1) <: (0'10m~'~1) iff m=nand k </

HFa: (0k10"%1) 0<k<I<n
H + buffer a :: (0'107~/~1)

o bufferfby: additional initialization (period crossed)
e Variations of buffer with other constraints:

o buffer which fixes its phase (ex: p < 3)
o buffer which constraint the latency (ex: pg — pa < 3)
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Unknown phases
00®00

Example of clock extraction

a,e :: period(1);

_ [ A N A
b,d :: period(2); I 11 T

c :: period(6);
b = buffer fi(a when (FT)); Y } -
¢ = buffer fa(b when (TFF)); ' b\ | d
d = buffer f3(current( (FFT), 0, ¢)) | \ / |
e = buffer f4(current( (TF), 0, d)) - f. L E——
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Unknown phases
00®00

Example of clock extraction

a,e :: period(1);

) [ G I Y A
b,d :: period(2); I 11 T
c :: period(6);
b = buffer fi(a when (FT)); | I

d = buffer f3(current( (FFT), 0, ¢))

¢ = buffer fa(b when (TFF)); " b
e = buffer f4(current( (TF), 0, d)) -

Wl

@ Bounds from variable declaration:
0<pape<l/0<pp,pg<2/0<p.<6b

e Constraints from buffer:
Pat1<pp/pob<pPc/Pc—4<pd/ pd<pe

@ Solutions:
pPa=pe=0/pp=1/ps=0/1<p.<4
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Solving the constraints (1)

@ Solving:
o Constraint form allows efficient solving
o Issue: Constraints for the cost function have a different form
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Solving the constraints (1)

@ Solving:
o Constraint form allows efficient solving
o Issue: Constraints for the cost function have a different form

@ Use case: flight control application
(6k nodes, 30k data, 4 harmonic periods)
e Sequential case: load balancing across phases
(task weight = its WCET)
o Direct ILP formulation of the problem tricky possible
(Introduce boolean variable 7 x for the phases)

= Does not scale...
o ILP formulation with only boolean variable

= First integral solution found after 40 mins
e Good solution, non-optimal, but takes too mush time

19/24



Unknown phases
ooo0e

Solving the constraints (2)

@ Using an ILP is an overkill

@ In this context, no need for an optimal solution
e A "good enough" solution is enough
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Solving the constraints (2)

@ Using an ILP is an overkill

@ In this context, no need for an optimal solution
e A "good enough" solution is enough

@ Heuristic:

e Initial solution: smallest valid phases for all nodes
o Decrease toward local minimum:

e Soft push (moving a phase without moving the rest)
o Intermediate data structure — quick evaluation of solution

= Result: decreasing takes less than a second
0,6% above the rational average

e Reinjection step:
e Complete the clocks of local variables
o Replace all buffer with delay (or remove them)
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Non-determinism
®00

Non-deterministic computation

@ Physical values with low temporal variability

e Ex: outside temperature
o Want last value, but not strict requirement (older one ok)
o Constraint on phase can be relaxed

= Express and use ND to give more freedom to the compiler

Wanted constraint: p;, +2 < pp

\N:" (instead of p, +4 < pp)
| |
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Non-deterministic computation

@ Physical values with low temporal variability

e Ex: outside temperature
o Want last value, but not strict requirement (older one ok)
o Constraint on phase can be relaxed

= Express and use ND to give more freedom to the compiler

Wanted constraint: p;, +2 < pp

\N:" (instead of p, +4 < pp)
| |

@ How to express notion in a minimal way in the language?

21/24



Non-determinism
oceo

Non-deterministic operator: fby?

@ Proposition: operator "fby?" to control non-determinism
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Non-determinism
oceo

Non-deterministic operator: fby?

Proposition: operator "fby?" to control non-determinism

Value of (1 fby? expr) can be:
e expr
o or (i fby expr)
Analysis:
o Clocking: same rule than fby
e Initialization: no issue
o Causality: conservatively assume no fby

Value of (i fby?” expr) can be:

e expr
o or (i fby* expr) (with 0 < k < n)

Determinization pass: Replace all fby? by a possible value
(in our case: fix that depending on its phase)
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Constraint extraction with non-determinism

y = (i £by?? x) when (FFT)

y = i £by?? current((TFF), 0, x)
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Constraint extraction with non-determinism

y = (i £by?? x) when (FFT) y = i £by?? current((TFF), 0, x)

@ Typing analysis: rule for £by? doesn't give any constraint

o Recognize fby? under a when & above a current
— Typing rules for these specific situations

@ Other option: defining when? and current? operators
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Conclusion
°

In summary. ..

@ 3 incremental extensions:
e 1-synchronous clocks
o ...with unknown phases
@ ...with non-deterministic computation

Hyperperiod expansion transformation

Constraints on phase can be inferred from the clocking rules

@ Non-deterministic operator & adaptation of constraints
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Conclusion
°

In summary. ..

@ 3 incremental extensions:
e 1-synchronous clocks
o ...with unknown phases
@ ...with non-deterministic computation

Hyperperiod expansion transformation

Constraints on phase can be inferred from the clocking rules

@ Non-deterministic operator & adaptation of constraints

Thank you for listening, . ..
e ...Do you have any questions?
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