
Leakage in presence of an active and adaptive

adversary

PACS Team - Verimag Laboratory
e-mail : Cristian.Ene@univ-grenoble-alpes.fr

Laurent.Mounier@univ-grenoble-alpes.fr

October 6, 2021

Measuring the information leakage of a system is very important for security.
From side-channels to biases in random number generators, quantifying how
much information a system leaks about its secret inputs is crucial for preventing
adversaries from exploiting it; this has been the focus of intensive research efforts
in the areas of privacy and of quantitative information flow (QIF). For example,
both programs in Figure 1 are leaking some additional information about the
secret if one can measure the execution time or if one can observe the instruction
cache. Moreover, by interacting iteratively with the application, the adversary
is able to improve his knowledge [6].

void compare(int l, int s){
if (s<l)

{write_log(‘‘too large’’);} // 1 sec.
else

{some_computation();} // 2 sec.
}

int pwdCheck(char *l, char* pwd){
unsigned i;
for (i=0; i<B_Size; i++)

if (l[i]!=pwd[i])
{return 0;}

return 1;
}

Figure 1: Leaking programs

Hence the overall scenario (Figure 2) is the following one:

• Some secret x ∈ X is generated and provided to the application

• Iteratively and adaptively,

1. The adversary provides some public input l ∈ L to the application

2. The application does some computation and outputs some y ∈ Y
The adversary’s knowledge about the the secret x ∈ X at some moment

i is called the prior probability πi (e.g. initially, π0 would be the uniform
distribution on X ). In our context, the application corresponds to a family of
probabilistic channels (Cl)l∈L, such that for each x ∈ X and l ∈ L, it returns a
y ∈ Y according to some distribution PCl

(Y = y | X = x). In the considered

1



Secret : x

Output: y

Input : l

Application

*

Figure 2: The target scenario

scenario, the adversary interacts iteratively (Figure 3) with the application until
his knowledge πk achieves some desired vulnerability level V(πk).
π←π0; // (1)

while V(π) ≤ ε do // (2)

l0←argmaxl∈L V[π.Cl]; // (3)

Execute App with input l0;
Get the output y0 returned by App;

Update π according to y0 // (4)

where

• (1) π0 is the initial probabilistic information about the secret x[1] (called
the prior)

• (2) ε is the intended level of knowledge (modelled by some measure V)
about the secret

• (3) find the “best” input l0 that optimises the leakage ; π.Cl0 is the hyper-
distribution corresponding to executing App with prior π and input l0,
i.e. the distribution of posteriors P(X | Y = y0, L = l0), each with
probability P(Y = y0 | L = l0)

• (4) use the Bayes law to update the belief: π←P(X | Y = y0, L = l0)

Figure 3: Attacker’s strategy

Several issues can be investigated in this internship:

• What are the best choices for the measures V and V[π.C] ?

• How to compute/approximate for each input l, the associated probabilistic
channel Cl (do we have the source code or not for App)?

• Given that in most of the cases the sets of inputs L, secrets X and ob-
servables Y can be very large

– How to represent and manipulate the distributions/hyper-distributions
over L?

– How to compute/approximate argmaxl∈L V[π.Cl], knowing that in
the most realistic scenario, the output Y will rather be a continuous
random variable [2].

2



• Information-theoretic vs. probabilistic polynomial-time adversary.

The topic of this internship can be oriented in various directions:

• refine the scenario from Figure 3 in a grey-box case, where the attacker
has the binary code of the application and integrate it into the BinSec
platform [3].

• develop abstractions and tools to represent and manipulate distributions
over memories where variables take values over large domains [5, 8].

• implementing the scenario from Figure 3 in order to synthesis an adaptive
attack [7] or to measure the vulnerability for a concrete application, using
for example symbolic execution [4].

This internship can be done within the framework of project ANR 20-CE25-
0009 TAVA.

References

[1] Mário S. Alvim et al. “An Axiomatization of Information Flow Measures”.
In: Theoretical Computer Science 777 (2019), pp. 32–54. doi: 10.1016/
j.tcs.2018.10.016. url: https://hal.archives-ouvertes.fr/hal-
01995712.

[2] Lucas Bang, Nicolás Rosner, and Tevfik Bultan. “Online synthesis of adap-
tive side-channel attacks based on noisy observations”. In: 2018 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). IEEE. 2018, pp. 307–
322.

[3] Robin David et al. “BINSEC/SE: A dynamic symbolic execution toolkit
for binary-level analysis”. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). Vol. 1. IEEE.
2016, pp. 653–656.

[4] James C King. “Symbolic execution and program testing”. In: Communi-
cations of the ACM 19.7 (1976), pp. 385–394.

[5] Piotr Mardziel et al. “Dynamic enforcement of knowledge-based security
policies using probabilistic abstract interpretation”. In: Journal of Com-
puter Security 21.4 (2013), pp. 463–532.

[6] Quoc-Sang Phan et al. “Synthesis of adaptive side-channel attacks”. In:
2017 IEEE 30th Computer Security Foundations Symposium (CSF). IEEE.
2017, pp. 328–342.

[7] Seemanta Saha et al. “Incremental Attack Synthesis”. In: ACM SIGSOFT
Software Engineering Notes 44.4 (2019), pp. 16–16.

[8] Ian Sweet et al. “What’s the over/under? probabilistic bounds on informa-
tion leakage”. In: International Conference on Principles of Security and
Trust. Springer, Cham. 2018, pp. 3–27.

3


