
Research Internship 2021-2022 Topic
Formally Verified Compilation of C and Rust

Supervisors: Sylvain Boulmé and David Monniaux at Verimag∗

in collaboration with their Phd students

mailto:Sylvain.Boulme@univ-grenoble-alpes.fr,David.Monniaux@univ-grenoble-alpes.fr

CompCert1 is a compiler for the C programming language for the assembly languages
of several processor architectures. In contrast to compilers such as Visual C++, GCC, or
LLVM, its compilation phases are proved mathematically correct, and thus the compiled
program always matches the source program: the formal correctness of CompCert states
that if the compiler succeeds to produce an executable, then the observable behaviors of the
executable are also observable on the source program [1, 2]. Other compilers may contain bugs
that in some cases result in incorrect code being generated. The possibility of compilation
bug cannot be tolerated in certain applications with high safety requirements, and then costly
solutions such as disabling all optimizations are used to get assembly code that is close to
the source. In contrast, CompCert, despite not optimizing as well as gcc -O3 or clang -O3,
allows using optimizations safely [3, 4]. CompCert is itself written as a combination of the
Coq interactive theorem prover2 and the OCaml programming language3.

CompCert-KVX4 is a variant of CompCert developed at Verimag which provides the first
formally verified efficient optimizations for superscalar and VLIW processors [5, 6, 7, 8, 9].
We propose several internship topics around formally verified compilation (to be discussed
according to the interests of the students), through modifications to CompCert-KVX or in
independent tools. Here are examples of hot topics for us:

• Extend the superblock scheduling of [9] to enable exchange of branching and basic
instructions modulo code duplication. We already have an experimental prototype of
this extension. We would like to redesign it from scratch, in order to have both a simpler
and more efficient implementation of this formally verified transformation. Experiment
mostly in OCaml, with experimental evaluation of performance, and with maybe a bit
of Coq.

• Currently, CompCert uses an unsound interface for embedding OCaml foreign code
within the Coq programming language. A solution has been proposed in [10] and
marginally experimented in CompCert-KVX. We would like to evaluate the feasibility
of fixing the whole CompCert in this way. Experiment mostly in Coq with a bit of
OCaml.

∗http://www-verimag.imag.fr/
1https://compcert.org/
2https://coq.inria.fr/
3https://ocaml.org/
4https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx

1

mailto:Sylvain.Boulme@univ-grenoble-alpes.fr,David.Monniaux@univ-grenoble-alpes.fr
http://www-verimag.imag.fr/
https://compcert.org/
https://coq.inria.fr/
https://ocaml.org/
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx


• We are currently investigating a Rust5 frontend for CompCert. In a first step, we would
like to implement an unverified prototype compiler from a small subset of MIR6 to C,
or more exactly Clight a subset of the C language internal to CompCert. Experiment
mostly in Rust with a bit of OCaml, and maybe Coq.

• Certain arithmetic operations may be implemented natively or by composition of ele-
mentary operations: we would like to implement and prove such expansions in a pass
before the superblock scheduling.

• CompCert for secure applications: see details in https://www-verimag.imag.fr/IMG/
pdf/sujet-compcert.pdf

References
[1] X. Leroy, “Formal verification of a realistic compiler,” Communications of the ACM,

vol. 52, no. 7, 2009. HAL: inria-00415861.
[2] ——, “A formally verified compiler back-end,” Journal of Automated Reasoning, vol. 43,

no. 4, pp. 363–446, 2009. [Online]. Available: http : / / xavierleroy . org / publi /
compcert-backend.pdf.

[3] R. Bedin França, S. Blazy, D. Favre-Felix, X. Leroy, M. Pantel, and J. Souyris, “For-
mally verified optimizing compilation in ACG-based flight control software,” in Embed-
ded Real Time Software and Systems (ERTS 2012), 2012. [Online]. Available: http:
//hal.inria.fr/hal-00653367/.

[4] D. Kästner, U. Wünsche, J. Barrho, M. Schlickling, B. Schommer, M. Schmidt, C.
Ferdinand, X. Leroy, and S. Blazy, “CompCert: Practical experience on integrating
and qualifying a formally verified optimizing compiler,” in ERTS 2018: Embedded Real
Time Software and Systems, SEE, Jan. 2018. [Online]. Available: http://xavierleroy.
org/publi/erts2018_compcert.pdf.

[5] C. Six, S. Boulmé, and D. Monniaux, “Certified and efficient instruction scheduling: Ap-
plication to interlocked VLIW processors,” Proc. ACM Program. Lang., vol. 4, no. OOP-
SLA, 129:1–129:29, 2020. doi: 10.1145/3428197. HAL: hal-02185883.

[6] D. Monniaux and C. Six, “Simple, light, yet formally verified, global common subex-
pression elimination and loop-invariant code motion,” in LCTES ’21: 22nd ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for Em-
bedded Systems, Virtual Event, Canada, 22 June, 2021, J. Henkel and X. Liu, Eds.,
ACM, 2021, pp. 85–96. doi: 10.1145/3461648.3463850. [Online]. Available: https:
//doi.org/10.1145/3461648.3463850.

[7] C. Six, “Optimized and formally-verified compilation for a VLIW processor,” PhD the-
sis, Université Grenoble Alpes, France, Jul. 2021. [Online]. Available: https://hal.
archives-ouvertes.fr/tel-03326923.

5https://www.rust-lang.org/
6https://rustc-dev-guide.rust-lang.org/mir/index.html

2

https://www-verimag.imag.fr/IMG/pdf/sujet-compcert.pdf
https://www-verimag.imag.fr/IMG/pdf/sujet-compcert.pdf
inria-00415861
http://xavierleroy.org/publi/compcert-backend.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
http://hal.inria.fr/hal-00653367/
http://hal.inria.fr/hal-00653367/
http://xavierleroy.org/publi/erts2018_compcert.pdf
http://xavierleroy.org/publi/erts2018_compcert.pdf
https://doi.org/10.1145/3428197
hal-02185883
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3461648.3463850
https://hal.archives-ouvertes.fr/tel-03326923
https://hal.archives-ouvertes.fr/tel-03326923
https://www.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/mir/index.html


[8] L. Gourdin, “Formally verified postpass scheduling with peephole optimization for
aarch64,” in 20èmes journées Approches Formelles dans l’Assistance au Développement
de Logiciels, AFADL 2021, Jun. 2021. [Online]. Available: https://www.lirmm.fr/
afadl2021/papers/afadl2021_paper_9.pdf.

[9] C. Six, L. Gourdin, S. Boulmé, and D. Monniaux, “Verified Superblock Scheduling
with Related Optimizations,” working paper or preprint, Apr. 2021, [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03200774.

[10] S. Boulmé, “Formally verified defensive programming (efficient Coq-verified computa-
tions from untrusted ML oracles),” See also http://www-verimag.imag.fr/ boulme/hdr.html,
Habilitation à diriger des recherches, Université Grenoble-Alpes, Sep. 2021. [Online].
Available: https://hal.archives-ouvertes.fr/tel-03356701.

3

https://www.lirmm.fr/afadl2021/papers/afadl2021_paper_9.pdf
https://www.lirmm.fr/afadl2021/papers/afadl2021_paper_9.pdf
https://hal.archives-ouvertes.fr/hal-03200774
https://hal.archives-ouvertes.fr/tel-03356701

