UFR IM?AG

Grenoble IN
i UNIVERSITE ENsimAg
oo Grenoble

74l Alpes

—"T

l

Software Mining and Re-engineering

About Code Obfuscation

Master M2 MoSiG (AISSE)

Academic Year 2018 - 2019

Code Obfuscation

— Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

15

Code Obfuscation

— Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:

v

intellectual property of some algorithms
data confidentiality

white-box cryptography

digital rights managements (DRM)

v

v

v

» and malware implementation !

15

Code Obfuscation

— Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:

v

intellectual property of some algorithms

v

data confidentiality
white-box cryptography
digital rights managements (DRM)

v

v

» and malware implementation !

obfuscation may target various reverse-engineering approaches

v

from source code vs from binary code
» manual vs tool-assisted
static (i.e., code inspection) vs dymanic (i.e., code execution) techniques

v

> efc

‘ = a large spectrum of obfuscation techniques ... ‘

15

Some examples of code obfuscation techniques

Kinds of obfuscation for each target
information

) Data sbfuscation @
5 3 Layout
Sterage & _hggragati ag
Split Change Merge scalar (| Reorder Seramble
variables | enceding variables instance Tdentifiers
variables
Promate Wodify Changs
alars to | variable inheritance || Reorder fornatting
shjscts lifetines ralations mtheds
Ramove
Comvert Split,fold, ||Reorder ssanasts
static data nerge, arrays
to procedurd arrays
) Control obfuscation (g Praventive
- 2 Transformations
Aggregation Ordering Cemputatisns
.
Inline Reorder Reducible to \-.,-!“'.d Inherent
method Explore weax] | Explers
Outline Reorder n in SRR
statenents || loops Extend laap eurrent problems
condition decompilers ||¥ith known
Clene Recrder and deobf- decbfuscation
methods expression || Table imter- ascators techniques
Ty pretaticn
Loop

Outline

Basic transformations

Example: source-level obfuscation against manual RE (1/3)

Example:From Stunnix

OOooO0O O DoOooOo

O

Actual code:
function foo(argl)

var myVarl = "some
string"; //first comment
var intVar = 24 * 3600;
//second comment
/* here is
a long
multi-line comment blah */

document. write("vars
are:" + myVarl + "" +
intvar + "" + argl) ;

=

O
=]

Obfuscated code:

function z001c775808(
23833986e2c) { var
z0d8bd8ba25=
"\X73\x6f\x6d\x65\x20\x73\x
74\x72\x69\x6e\x67"; var
z0ed9bcbcc2= (0x90b+785-
0xc04?) (0x1136+6437-
Ox1c4b); document. wrlteé
"\x76 x61 x?2\x?3\x20\x 1\
x72\x65\x3a"

20d8bd8ba25+ "\x20"+
z0ed9bcbcc2+ "\x20"+
23833986e2c);};

15

Example: source-level obfuscation against manual RE (2/3)

Step by step examination

O The Stunnix obfuscator targets at obfuscating
only the layout of the JavaScript code

O As the obfuscator parses the code, it removes
spaces, comments and new line feeds

O While doing so, as it encounters user defined
names, it replaces them with some random
string

O It replaces print strings with their hexadecimal
values

O It replaces integer values with complex
equations

Example: source-level obfuscation against manual RE (3/3)

|
In the sample code that was obfuscated, the following
can be observed
User defined variables:
m foo replaced with z001c775808
B argl replaced with z3833986e2c
B myvarl replaced with z0d8bd8ba25
B intvar replaced with z0ed9bcbcc2
O Integers:
B 20 replaced with (0x90b+785-0xc04)
B 3600 replaced with (0x1136+6437-0x1c4b)
O Print strings:

B “vars are” replaced with
\X76\x61\x72\x73\x20\x61\x72\x65\x3a
B Space replaced with \x20

Example: source-level obfuscation against manual RE (3/3)

|
In the sample code that was obfuscated, the following
can be observed
User defined variables:
m foo replaced with z001c775808
B argl replaced with z3833986e2c
B myvarl replaced with z0d8bd8ba25
B intvar replaced with z0ed9bcbcc2
O Integers:
B 20 replaced with (0x90b+785-0xc04)
B 3600 replaced with (0x1136+6437-0x1c4b)
O Print strings:

B “vars are” replaced with
\X76\x61\x72\x73\x20\x61\x72\x65\x3a
B Space replaced with \x20

Outline

Examples of Data Obfuscation

Data re-encoding

Replace variables by complex expressions, e.g.,

int a = argl;

int b = arg2;

int x = ax*b;

printf ("x=%i\n", x);
replaced by

a = 1789355803 % argl + 1391591831,

b = 1789355803 % arg2 + 1391591831;
((3537017619 * (a % b) - 3670706997 % a) -

3670706997 % b) + 3171898074;

printf ("x=%i\n", -757949677 x x - 3670706997);

X

15

Data re-encoding

Replace variables by complex expressions, e.g.,

int a = argl;

int b = arg2;

int x = ax*b;

printf ("x=%i\n", x);
replaced by

a = 1789355803 % argl + 1391591831,

b = 1789355803 % arg2 + 1391591831;
((3537017619 * (a % b) - 3670706997 % a) -

3670706997 % b) + 3171898074;

printf ("x=%i\n", -757949677 x x - 3670706997);

X

Replace standart arithmetic operations by more complex ones,e.qg.,

Z=X+y+w
replaced by:
z = (((x ~y) + ((y) << 1)) | w) +
(((x ~y) + ((x &y) << 1)) & w)

15

Data re-encoding

Replace variables by complex expressions, e.g.,

int a = argl;
int b = arg2;
int x = ax*b;

printf ("x=%i\n", x);
replaced by

a = 1789355803 * argl + 1391591831;

b = 1789355803 * arg2 + 1391591831;

((3537017619 * (a * b) — 3670706997 * a) -
3670706997 % b) + 3171898074;

printf ("x=%i\n", -757949677 x x - 3670706997);

X

Replace standart arithmetic operations by more complex ones,e.g.,

Z=xX+y+w
replaced by:
z = (((x ~y) + ((x y) << 1)) | w) +
(((x ~y) + ((x &y) << 1)) & w)

= obfuscate the data operations performed in the code

15

Data split, fold or merge

» Split some variables of type T; into sets of variables of type T, e.g.:
int a
split into
struct {char al; char a2; char a3 ; char a4} a
» Merge some variables of type Ty, T, into a variables of type T, e.g.:
int a ; char b
merged into
long ab

» Fold or Flatten arrays into higer/lower dimensionnal arrays

» Convert static data into procedural data (“table look-up”, see next
slide)

— needs alias computations and encoding/decoding functions

15

Converting Static Data to
Procedural Data

static String G (int n) {

aaia) { i
st 51,52,83,4; -
Sir:";ul:" e char[] S = new char[20];
52 = "BAI; £ while (true) | N
= “oCB"; Li: if (n==1) {S[i++]="A’; k=0; goto L6};
84 = "eCB"; L2: if (n==2) {S[i++]="B’; k=-2; goto L6};
} L3: if (n==3) {8[i++]="C'; goto LO};
L4: if (n==4) {S[i++]="X'; goto LO};
.U,T LE: if (ne==B) [8[i++]='C'; goto Li1};
if (n12) geto L1;
nain() { L6: 4f (ke+cz2) [S[is+]='A’; goto L6}
String 51,852,583, %4, 85; else goto L8;
8 = G(”f LB: return String.valued! (S);
2= a2 L9: Slinl=c’; goto L10;
o = (0 L10: S[i++1='B"; goto L8;
= = A; L11: S[is+])='C'; goto L12;
it (P) 85 = G(9); Li2: goto Li0;
) }

10/15

Outline

Examples of Code Obfuscation

Opaque predicates

Tramsform the control-flow graph (CFG) by inserting spurious conditions
(evaluating always to true)
The condition is given as complex predicate, those value is hard to predict at
compile-time, i.e.:

» not removed by the optimizer

» not detected by static code analyser

1http ://tigress.cs.arizona.edu/transformPage/docs/addOpaque/index.html
11/15

Opaque predicates

Tramsform the control-flow graph (CFG) by inserting spurious conditions
(evaluating always to true)
The condition is given as complex predicate, those value is hard to predict at
compile-time, i.e.:

» not removed by the optimizer

» not detected by static code analyser

Some applications’

» if expr=false then
call to random existing function

» if expr=false then
call to non-existing function

» if expr=true then
existing statement
else
buggified version of the statement

1http ://tigress.cs.arizona.edu/transformPage/docs/addOpaque/index.html

11/15

Virtualization

Turns a function into a interpreter by:
» generating a dedicated (bytecode) instruction set
» a bytecode array, a virtual program counter (VPC) and a virtual stack
pointer (VSP)
» adispatch unit, and the bytecode instruction handlers

Virtual

. ADD
Instruction Set
IJMP PUSH
Specialized
Bytcode*»l ADD ‘ X ‘ 7 ‘PUSH‘ JMP ‘ |
Program
void foo () { Mec
L evuion I O N
} Stack —
Avsp
Dispatch
Unit

Instruction

ADD: h +
Handler {push (pop () +pop () }

MUL: {push (pop () *pop () }

12/15

Outline

Some other obfuscation techniques

Anti-Disassembling

e

: Code Obfuscation in
.| Disassembly Phase
-

« Thwarting disassembly
+ Junk Insertion
» Thwarting Linear Sweep

« Thwarting Recursive Traversal
Branch functions
Call conversion
Opaque predicates
Jump Table Spoofing

13/15

Anti-Dynamic analysis

Prevent a program to be analyzed under a debugger, an emulator, a virtual
machine ...

» use process control primitives to prevent debugging
e.g., ptrace on Linux,

» try to access regular peripherals (network, printer, filesystem, etc.)
» monitor the execution time

> etc.

Rk: (highly) used by malwares .. .!

14/15

Conclusion
Many other transformations proposed so far ...
Expected properties of an obfuscator
» correctness: should preserve the code semantics

» resilience: should prevent (basic/advanced ?) reverse-engineering
» cost: should not “explode” the code complexity (time, memory, etc.)

15/15

Conclusion
Many other transformations proposed so far ...
Expected properties of an obfuscator
» correctness: should preserve the code semantics

» resilience: should prevent (basic/advanced ?) reverse-engineering
» cost: should not “explode” the code complexity (time, memory, etc.)

However ...

» no chance to build an universal obfuscator
(i.e., able to obfuscate any input program)

» de-obfuscation tools are guided by existing obfuscation techniques ...

(keep your obfusactor secret !)

15/15

Conclusion

Many other transformations proposed so far ...
Expected properties of an obfuscator

» correctness: should preserve the code semantics
» resilience: should prevent (basic/advanced ?) reverse-engineering
» cost: should not “explode” the code complexity (time, memory, etc.)

However ...

» no chance to build an universal obfuscator
(i.e., able to obfuscate any input program)

» de-obfuscation tools are guided by existing obfuscation techniques ...
(keep your obfusactor secret !)

Credits
> https://fr.slideshare.net/bijondesai/code-obfuscation

> https://fr.slideshare.net/amolkamblel6121/code-obfuscation-40283580

» Christian Collberg web page: http://tigress.cs.arizona.edu/index.html

15/15

	Basic transformations
	Examples of Data Obfuscation
	Examples of Code Obfuscation
	Some other obfuscation techniques

