UFR IM?AG

Grenoble IN
i UNIVERSITE Ensmngl
oo Grenoble

74l Alpes

—"T

l

Software Mining and Re-engineering

Reverse-engineering from binary code

Master M2 MoSiG (AISSE)

Academic Year 2018 - 2019

About this part of the SMRe course

Objectives

» a brief overview on binary code reverse engineering:
motivation, challenges, techniques and tools . ..

» how to protect your code from beeing “reversed”:
obfuscation and de-obfuscations techniques ...

Organisation

» 2 lectures (Dec. 13th and 20th, 11.30 am, room H201)
» 2 “labs” (Dec. 13th and 20th, 2 pm, room E212)

Outline

Introduction

Software = several knowledge/information levels

v

(formal) models: overall architecture, component behaviors
specifications, algorithms, abstract data structures

source code
objects, variables, types, functions, control and data flows

possible intermediate representations: Java bytecode, LLVM IR, etc.

assembly
binary code (relocatable / shared object / executable)

Some reverse-engineering settings:

>

>

>

source level — model level ...
de-compiling: binary — source level
disassembling: binary — assembly level
etc.

40

Why and when bothering with binary code ? (1)

40

Why and when bothering with binary code ? (1)

— when the source code is not/no longer available

v

updating/maintaining legacy code

v

“off-the-shell” components (COST), external libraries

v

dynamically loaded code (applets, plugins, mobile apps)

v

pieces of assembly code in the source

» suspicious files (malware, etc.)

40

Why and when bothering with binary code ? (2)

— when the source code is not sufficient

“What You See Is Not What You Execute” [T. Reps]

» untrusted compilation chain
» low-level bugs, at the HW/SW interface

» security analysis
going beyond standard programming language semantics
(optimization, memory layout, undefined behavior, protections, etc.)

40

Why and when bothering with binary code ? (2)

— when the source code is not sufficient

“What You See Is Not What You Execute” [T. Reps]

» untrusted compilation chain
» low-level bugs, at the HW/SW interface

» security analysis
going beyond standard programming language semantics
(optimization, memory layout, undefined behavior, protections, etc.)

Beware | Reverse-engineering is restricted by the law . ..

40

Outline

Low-level code representations

Example 1: Java ByteCode (stack machine)’

public static int main()

int x, r;

x=42 ; r=1
while (x>0)
r r+X;
x = x-1;
b

return r ;

}

{

public static int main(java.lang.Stringl[]);
Code:
0: bipush 42
2: istore_1
3: iconst_1
4: istore_2
5: iload_1
6: ifle 20
9: iload_2
10: iload_1
11: imul
12: istore_2
13: iload_1
14: iconst_1
15: isub
16: istore_1
17: goto 5
20: iload_2
21: ireturn

'use javap -c to produce the bytecode

40

Example 2: LLVM IR (machine a registre)

%0:

%1 = alloca 132, align 4

%x = alloca i32, align 4

%r = alloca i32, align 4
store i32 0, i32* %1

store i32 42, i32* %x, align 4
store i32 1, i32* %r, align 4
br label %2

int main () { l
int x, r;

%2:
x=42 ; r=1 ;
. %3 = load i32* %x, align 4
while (x>0) { %4 = icmp sgt 132 %3, 0
i1 9 9 9
r = r+x; br il %4, label %5, label %11
T [F
x = x-1;
b A
return r ; %5:
} %6 = load i32* %r, align 4
%7 = load i32* %x, align 4 %11:
%8 = mul nsw i32 %6, %7
store i32 %8, 132* %, align 4 %12 = load i32* %r, align 4
%9 = load i32* %x, align 4 ret i32 %12
%10 = sub nsw i32 %9, 1
store i32 %10, i32* %x, align 4
br label %2

CFG for 'main' function

main:

int main() {
int x, r;
x=42 ; r=1 ; .L3:
while (x>0) {
r = r+*Xx;
x = x-1;
b
return r ; L2

}

2see https://godbolt.org/

Example 3: assembly code (x86-64)2

push
mov
mov
mov

jmp

mov
imul
mov
sub

cmp
jg

mov
pop
ret

rbp

rbp, rsp

DWORD PTR [rbp-4], 42
DWORD PTR [rbp-8], 1
L2

eax, DWORD PTR [rbp-8]
eax, DWORD PTR [rbp-4]
DWORD PTR [rbp-8], eax
DWORD PTR [rbp-4], 1

DWORD PTR [rbp-4], O
.L3

eax, DWORD PTR [rbp-8]
rbp

40

Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
— need to be loaded in memory to be executed (using a loader)

However:

>

no abolute addresses are stored in the executable code
— decided at “load time”

not all the executable code is stored in the executable file
(e.g., dynamic libraries)

data memory can be dynamically allocated
data can become code (and conversely ...)
etc.

— the executable file should contain all the information required ...

Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
— need to be loaded in memory to be executed (using a loader)

However:

>

>

>

>

no abolute addresses are stored in the executable code
— decided at “load time”

not all the executable code is stored in the executable file
(e.g., dynamic libraries)

data memory can be dynamically allocated
data can become code (and conversely ...)
etc.

— the executable file should contain all the information required ...

3 standards executable formats: ELF (Linux), PE (Windows), etc.

>

| 4

Rks: stripped (no symbol table) vs verbose (debug info) executables . ..

header

sections: text, initialized/unitialized data, symbol tables, relocation
tables, etc.

40

Example 1: Linux EIf

ELF object file format

Program header table
text
.data
rodata
.bss
-sym
rel.text
rel.data
.rel.rodata
line
.debug
_strtab
Section header table

10/40

Example 2: Windows PE

PE File Format Gier
PE File Farmal
Lo E e n iy
WT Handai

MEDTE Pk bode
Fub Program

PE Fda Sagriahins

FE Fite
Hamder

PE Fis
Dipkand Hidair

Eal 5] B H T

bes Secbion Hogoer

reiaks 5o chon e

11/40

x86 (32) assembly language in one slide

Registers:
» stack pointer (ESP), frame pointer (EBP), program counter (EIP)
» general purpose: EAX, EBX, ECX, EDX, ESI, EDI
» flags

Instructions:
» data transfer (MOV), arithmetic (ADD, etc.)
» logic (AND, TEST, etc.)
» control transfer (JUMP, CALL, RET, etc)

Adressing modes:
» register: mov eax, ebx
» immediate: mov eax, 1
» direct memory: mov eax, [esp+12]

12/40

Stack layout for the x86 32-bits architecture

saved ESI
E saved EDI
(%]
S local variable 3 ESF
o
2 local variable 2
o0

local variable 1 [ebp]-4

saved EBP
=L
% return address EBP
% parameter 1 [ebp]+8
gﬁ-; parameter 2 [ebp]+12
0n
o parameter 3 [ebp]+16

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

ABI (Application Binary Interface)

to “standardize” how processor resources should be used
= required to ensure compatibilities at binary level

v

v

calling conventions

sizes, layouts, and alignments of basic data types

argument & return value passing, saved registers, etc.

\4

v

system calls to the operating system

the binary format of object files, program libraries, etc.

Cleans Stack| Arguments |Arg Ordering
cdecl Caller On the Stack | Right-to-left
fastcall Callee ECX,EDX, Left-to-Right
then stack
stdcall Callee On the Stack | Left-to-Right
VCe+ thiscall| callee | EPX(thish | ot toulett
then stack
On the Stack
GCC thiscall Caller (this pointer | Right-to-left
first)

Figure: some calling conventions

14/40

Outline

Disassembling

Understanding and analysing binary code ?

01010100
01101001
01101011
01100100

01100110
01100101
01100101
01110100

01101000
01101110
00100000
01101001
01100110
01110010
01101110
00101110

15/40

Understanding and analysing binary code ?

80006000 push ebp
aeaBenAa81 mov ebp, esp
006000003 movzx ecx, [ebprarg_0]
8000680807 pop ebp
Ll TsTs]e]et:y mouzx dx, cl
01010100 01101000 90000000 lea eax, [edx+edx]
01101001 01101110 a00a008F add eax, edx
aea8nae11 hl 2
01101011 00100000 LT b ;dd :::, edx
01100100 01101001 08080016 shr eax, 8
01100110 01100110 gggggm S:h Ei’ :1
01100101 01110010 2 S
01100101 01101110 RABEMOIF ol
01110100 00101110 00000022 novzx eax, al
soeeee25 retn

Disassembling !

statically:
disassemble the whole file content without executing it . ..

dynamically: disassemble the current instruction path during
execution/emulation ...

Static Disassembling (1)
Assume “reasonnable” (stripped) code only
— no obfuscation, no packing, no auto-modification, . ..
Enough pitfalls to make it undecidable ...
main issue: distinguishing code vs data . ..
» interleavings between code and data segments
» dynamic jumps (jmp <register>)

» possible variable-length instruction encoding, # addressing modes, . ..
e.g, > 1000 distinct x86 instructions
1.5 year to fix the semantics of x86 shift instruction at CMU

16/40

Static Disassembling (1)
Assume “reasonnable” (stripped) code only
— no obfuscation, no packing, no auto-modification, . ..
Enough pitfalls to make it undecidable ...
main issue: distinguishing code vs data . ..
» interleavings between code and data segments
» dynamic jumps (jmp <register>)

» possible variable-length instruction encoding, # addressing modes, . ..

e.g, > 1000 distinct x86 instructions
1.5 year to fix the semantics of x86 shift instruction at CMU

— much worse when considering self-modifying code, packers, etc.
Example: x86 instruction format

"ﬁgﬁi‘;‘s’” Opcode ModR/M ‘ SIB ‘ Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 65 32 0 7 65 32 0
| Mod ‘ Osceogd/e ‘ R/M | I Scale | Index Base |

16/40

Static Disassembling (2)

Classical static disassembling techniques

» linear sweep: follows increasing addresses (ex: ob jdump)
— pb with interleaved code/data ?

» recursive disassembly: control-flow driven (ex: IDAPro)
— pb with dynamic jumps ?

» hybrid: combines both to better detect errors ...

Some existing tools

» |DA Pro
a well-known commercial disassembler, # useful features
» On Linux plateforms (for ELF formats):
> objdump (-S for code disassembling)
> readelf

» and many others (Capstone, Miasm, etc.)

Rk: may produce assembly-level IR instead of native assembly code
— simpler language (a few instruction opcodes), explicit semantics (no
side-effects), share analysis back-ends

Static disassembly (cont'd)

See some Emmanuel Fleury slides ...

18/40

Indirect Jumps

BRANCH R;

(branch address computed at runtime and stored inside register R;)

= A critical issue for static disassemblers/analysers ...

Occurs when compiling:
» some swicth statements
high-order functions (with function as parameters and/or return values)
pointers to functions
» dynamic method binding in OO-languages, virtual calls
> efc.

v

v

19/40

Example of Indirect Jump

Source code example:

enum {DIGIT, AT, BANG, MINUS}
f (char c) {
switch(c) {

case '0': case "1’: case ’'2’': case '3':
case '5': case '6’: case '7’': case '8':

case 'Q@’: return AT ;
case ’!’: return BANG ;
case '-’: return MINUS ;
}

}

3See https://godbolt.org/

(borrowed from E. Fleury)

case "4':
case ’9’: return DIGIT

7

20/40

Example of Indirect Jump (borrowed from E. Fleury)

Source code example:

enum {DIGIT, AT, BANG, MINUS}

f (char c) {

switch(c) {

case '0': case "1’: case ’'2’': case '3': case "4’:

case '5": case '6’: case '7’: case ’'8’: case "9’: return DIGIT ;
case 'Q@’: return AT ;

case ’!’: return BANG ;

case ’'-': return MINUS ;

}

}

Code produced with x86-64 gccs.2®

f:
push rbp
mov rbp, rsp
mov eax, edi
mov BYTE PTR [rbp-4], al
movsx eax, BYTE PTR [rbp-4]
sub eax, 33 ; Ascii for ’!’
cmp eax, 31 ; 64 is Ascii for '@’
ja L2 ; out of bounds
mov eax, eax
mov rax, QWORD PTR .L4[0O+rax=*8] ; offset in a jump table
Jjmp rax

3See https://godbolt.org/
20/40

Dynamic disassembly

Main advantage: disassembling process guided by the execution

» ensures that instructions only are disassembled
» the whole execution context is available (registers, flags, addresses, etc.)

v

dynamic jump destinations are resolved

v

dymanic libraries are handled
> efc.

However:

» only a (small) part of the executable is disassembled
» need some suitable execution plateform, e.g.:

> emulation environment

> binary level code instrumentation

> (scriptable) debugger
> efc.

21/40

Outline

Retrieving source-level information

Objectives

When the code has been (partially !) disassembled ...

... how to retrieve useful source-level information ?
(e.g.: variables, types, functions, control and data-flow relations, etc.)

Challenges
Still a gap between assembly and source-level code ...

» basic source elements lost in translation:
functions, variables, types, (conditionnal) expressions, ...

» pervasive address computations (addresses = values)
> etc.

Rk: # between code produced by a compiler and written by hand
(structural patterns, calling conventions, .. .)

Again, 3 static and dynamic approaches ...

22/40

Function identification
Retrieve functions boundaries in a stripped binary code ?

Why is it difficult ?
» not always clean call/ret patterns:
optimizations, multiple entry points, inlining, etc.

» not always clean code segment layout:
extra bytes (¢ any function), non-contiguous functions, etc.

Possible solution ...

» from pattern-matching on (manually generated) binary signatures

> simple ones (push [ebp]) or advanced heuristics as in [TDAPro]
» standart library function signature database (FLIRT)

> ...

» to supervised machine learning classification ...

— no “sound and complete” solutions ...

23/40

Variable and type recovery

2 main issues
» retrieve the memory layout (stack frames, heap structure, etc.)
» infer size and (basic) type of each accessed memory location

24/40

Variable and type recovery

2 main issues
» retrieve the memory layout (stack frames, heap structure, etc.)
» infer size and (basic) type of each accessed memory location

Memory Layout

“addresses” of global/local variables, parameters, allocated chunks
» static basic access paterns (epb+offset) [IDAPro]
» Value-Set-Analysis (VSA)

24/40

Variable and type recovery

2 main issues
» retrieve the memory layout (stack frames, heap structure, etc.)
» infer size and (basic) type of each accessed memory location

Memory Layout

“addresses” of global/local variables, parameters, allocated chunks
» static basic access paterns (epb+offset) [IDAPro]
» Value-Set-Analysis (VSA)

Types
» dynamic analysis:
type chunks (library calls) + loop pattern analysis (arrays)
» static analysis: VSA + Abstract Structure Identification

» Proof-based decompilation relation inference
type system + program witness [POPL 2016]

24/40

Static variable recovery
Retrieve the address (and size) of each program “variable” ?

Difficult because:

v

addresses and other values are not distinguishable
address <> variable is not one-to-one

» address arithmetic is pervasive

both direct and indirect memory adresssing

v

v

25/40

Static variable recovery
Retrieve the address (and size) of each program “variable” ?

Difficult because:

» addresses and other values are not distinguishable
address < variable is not one-to-one
» address arithmetic is pervasive

v

v

both direct and indirect memory adresssing

Memory regions + abstract locations

A memory model with 3 distinct regions:

Global: global variables

Local: local variables + parameters (1 per proc.)

v

v

» Dynamic: dynamically allocated chunks
» Registers
< associates a relative address to each variable (a-loc)

25/40

The so-called “naive” approach (IDAPro)

Heuristic
Adresses used for direct variable accesses are:

» absolute (for globals + dynamic)
» relative w.r.t frame/stack pointer (for globals)
— can be statically retrieved with simple patterns ...

Limitations

» variables indirectly accessed (e.g., [eax]) are not retrieved
(e.g., structure fields)

» array = (large) contiguous block of data

= Fast recovery technique, can be used as a bootstrap
But coarse-grained information, may hamper further analyses ...

26/40

Example

typedef struct
char ¢ ;}

{int 1 ;

int main() {

S x,
char

p2 =

al[l0]
*pl ;

&(x.1)

return 0 ;

a -60
X.i -10
P2 -8
pl |4

7

int *p2
pl = &(al[9].c)

7

7

;

S

7

var_60= byte
var_10= byte
var_8= dword
var_4= dword

push
mov
sub
lea
add
mov
lea
mowv
mov

leave

retn

ebp

ebp,
esp,
eax,
eax,

ptr -60h
ptr -10h
ptr -8

ptr -4

esp

60h
[ebp+var_60]
4Ch

[ebpt+var_4], eax

eax,

[ebp+var_10]

[ebpt+var_8], eax

eax,

main endp

0

27/40

Going beyond: Value Set Analysis (VSA)

Compute the contents of each a-loc at each program location ...

...as an over-approximation of:

» the set of (integer) values of each data at each prog. loc.

» the addresses of “new” a-locs (indirectly accessed)

— combines simultaneously numeric and pointer-analysis
Rk: should be also combined with CFG-recovery ...

= Can be expressed as a forward data-flow analysis ... ‘

28/40

Going beyond: Value Set Analysis (VSA)

Compute the contents of each a-loc at each program location ...

...as an over-approximation of:

» the set of (integer) values of each data at each prog. loc.

» the addresses of “new” a-locs (indirectly accessed)

— combines simultaneously numeric and pointer-analysis
Rk: should be also combined with CFG-recovery ...

= Can be expressed as a forward data-flow analysis ... ‘

A building block for many other static analysis ...

» function “signature” (size and number of parameters)
data-flow dependencies, taint analysis

v

v

alias analysis
» type recovery, abstract structure identification
> etc.

28/40

Example: data-flow analysis

Does the value of y depend from x ?

int
X
p =

y =

Xy *Py Vi

=3 ;

&xX

*p +

4 ; // data-flow from x to y ?

At assembly level:

1. needs to retrieve x address

2. needs to follow memory transfers from x address ...

mov
lea
mov
mov

mov
add
mov

[ebp—

eax,

[ebp-

eax,

eax,
eax,

[ebp—

41, 3 /x x=3 ; */
[ebp-4]
8], eax /x p = &x
[ebp-8]

/+ follow operations on eax

[eax] /x y = *p+4
4
121, eax

ix/

’

227 */

29/40

CFG construction

Main issue
handling dynamic jumps (e.g., jmp eax) due to:
» switch statements (“jump table”)
» function pointers, trampoline, object-oriented source code, . ..

Some existing solutions

» heuristic-based approach (“simple” switch statements) [IDA]
» abstract interpretation: interleaving between VSA and CFG expansion

» use of dedicated abstract domains
> use of under-approximations ...

Rk: may create many program “entry points” = many CFGs ...

30/40

Outline

Bonus: Dynamic source-level information recovery

An (ultra) lightweight dynamic technique

Starting from a binary code . ..

» without source, debug information, symbol table
» but those architecture and calling convention is known
» and which can be instrumented & executed

... retrieve function-level information

» function arity and signatures
» quantified coarse grain data-flow information between functions

— within a single code execution

31/40

General approach

A 3-steps process

1. alightweight dedicated binary code instrumentation to collect runtime
information

2. the one trace execution step to generate a log file

3. an offline log analysis to produce the results ...

Relying on aggressive heuristics to approximate the notion of
parameter, type and data-flow ...

32/40

Main heuristics
parameter definition

a memory location read before written is a input parameter
(holds also accross function boundaries)

33/40

Main heuristics

parameter definition

a memory location read before written is a input parameter
(holds also accross function boundaries)

type definition

» ADDR types can be deduced from load/store operations
» once an ADDR, always an ADDR
» non ADDR values are of type NUM

33/40

Main heuristics

parameter definition

a memory location read before written is a input parameter
(holds also accross function boundaries)

type definition

» ADDR types can be deduced from load/store operations
» once an ADDR, always an ADDR
» non ADDR values are of type NUM

data-flow definition

» consider only ADDR flows

» ADDR collisions are not fortuitous:
ADRR value a produced by foo and consumed by bar = data-flow fron
footo bar ...

33/40

Implementation
SCAT, open source: https://github.com/Frky/scat

» dynamic code instrumentation using PIN
— function detection based on call/ret instructions

» minimize the size of the instrumentation code
— extra implementation level heuristics
(e.g., a value betteen two ADDR is an ADDR)

» user given MIN_CALL threshold

» embeds an oracle* for function signatures

Experiments:
» coreutils (> 100 pgms)
» 10 common Linux pgms: git, grep, mupdf, objdump, openssl, etc.

“pased on clang
34/40

https://github.com/Frky/scat

Experimental results: arity

overview

address flow

- EVALUATION - PARAMETERS -

PROGRAM accuracy £fn fp total overhead
8cc 98 % 4 2 283 5,43
bash 95 % 8 7 283 1,92
coreutils 93 % 154 15 2515 3,67
git 96 % 15 6 492 2,37
grep 91 % 6 2 86 3,46
mupdf 94 % 13 7 348 4,55
objdump 89 % 7 7 132 4,10
openssl 96 % 4 3 194 3,04
opusenc 94 % 2 () 36 10,97
TOTAL 93 % 248 61 4546 3,76

(Caverage) (sum) (sum) (sum) (average)

35

October 20th, 2017

35/40

Experimental results: types

overview

address flow

- EVALUATION - PARAMETERS -
PROGRAM accuracy £fn fp total overhead
8cc 98 % 4 3 307 6,37
bash 96 % 14 2 374 1,75
coreutils 92 % 208 55 3299 2,51
git 94 % 26 4 530 2,12
grep 95 % 4 3 129 2,99
mupdf 96 % 17 11 746 7,12
objdump 94 % 3 12 231 3,59
openssl 95 % 9 5 308 2,99
opusenc 98 % (7] 1 53 7,23
TOTAL 96 % 296 101 6294 3,53

47

October 20th, 2017

36/40

Outline

Some Tools ...

IDA Pro [HexRays]

A swiss-knife for reverse engineering ...

» Commercial disassembler and debugger

» Supports 50+ processors (intel, ARM, .NET, PowerPC, MIPS, etc.)

» Recognizes library functions FLIRT (C/C++ only)

» Builds call graphs and CFGs

» Tags arguments/local variables

» Rename labels (variables names etc.)

» Provides scripting environment (IDC, Python) and debugging facilities

37/40

Script example

#include <idc.idc>
/* this IDA pro script enumerate all funtions and prints info about them =/
static main()

{

auto addr, end, args, locals, frame, firstArg, name, ret;
addr=0;
for (addr=NextFunction (addr); addr != BADADDR; addr=NextFunction (addr))
{
name=Name (addr) ;
end= GetFunctionAttr (addr, FUNCATTR_END) ;
locals=GetFunctionAttr (addr, FUNCATTR_FRSIZE) ;
frame=GetFunctionAttr (aiddr, FUNCATTR_FRAME) ;

ret=GetMemberOffset (frame, " r");
if (ret == -1) continue;
firstArg=ret +4;

args=GetStrucSize (frame) -firstArg;

Message ("function %s start at %x, end at $x\n",name, addr, end);
Message ("Local variables size is %d bytes\n",locals);
Message ("arguments size %d (%d arguments)\n",args, args/4);

38/40

PIN [Intel]

A swiss-knife for binary-level dynamic analysis ...

A dynamic code instrumentation framework

» run time instrumentation on the binary files

» provides APIs to define insertion points and callbacks
(e.g., after specific inst., at each function entry point, etc.)

» Free for non-commercial use, works on Linux and windows

39/40

Example: instruction counting

#include "pin.h"
UINT64 icount = 0;
void docount () { icount++; }

void Instruction (INS ins, void =*v)

{

INS_InsertCall (ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);
}

void Fini (INT32 code, void =*v)
{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv([])

{

PIN_Init (argc, argv);
INS_AddInstrumentFunction (Instruction, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram() ;

return 0;

}

40/40

	Introduction
	Low-level code representations
	Disassembling
	Retrieving source-level information
	Bonus: Dynamic source-level information recovery
	Some Tools …

